\(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^2} \, dx\) [685]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 153 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx=-\frac {2 a C \text {arctanh}(\sin (c+d x))}{b^3 d}-\frac {2 \left (A b^4-2 a^4 C+3 a^2 b^2 C\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{(a-b)^{3/2} b^3 (a+b)^{3/2} d}+\frac {C \tan (c+d x)}{b^2 d}+\frac {a \left (A b^2+a^2 C\right ) \tan (c+d x)}{b^2 \left (a^2-b^2\right ) d (a+b \sec (c+d x))} \] Output:

-2*a*C*arctanh(sin(d*x+c))/b^3/d-2*(A*b^4-2*C*a^4+3*C*a^2*b^2)*arctanh((a- 
b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/(a-b)^(3/2)/b^3/(a+b)^(3/2)/d+C*t 
an(d*x+c)/b^2/d+a*(A*b^2+C*a^2)*tan(d*x+c)/b^2/(a^2-b^2)/d/(a+b*sec(d*x+c) 
)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(336\) vs. \(2(153)=306\).

Time = 3.15 (sec) , antiderivative size = 336, normalized size of antiderivative = 2.20 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx=\frac {2 (b+a \cos (c+d x)) \left (A+C \sec ^2(c+d x)\right ) \left (\frac {2 \left (A b^4-2 a^4 C+3 a^2 b^2 C\right ) \text {arctanh}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right ) (b+a \cos (c+d x))}{\left (a^2-b^2\right )^{3/2}}+2 a C (b+a \cos (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 a C (b+a \cos (c+d x)) \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {b C (b+a \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )}+\frac {b C (b+a \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )}{\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )}+\frac {a b \left (A b^2+a^2 C\right ) \sin (c+d x)}{(a-b) (a+b)}\right )}{b^3 d (A+2 C+A \cos (2 (c+d x))) (a+b \sec (c+d x))^2} \] Input:

Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^2,x 
]
 

Output:

(2*(b + a*Cos[c + d*x])*(A + C*Sec[c + d*x]^2)*((2*(A*b^4 - 2*a^4*C + 3*a^ 
2*b^2*C)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]]*(b + a*Cos[c 
 + d*x]))/(a^2 - b^2)^(3/2) + 2*a*C*(b + a*Cos[c + d*x])*Log[Cos[(c + d*x) 
/2] - Sin[(c + d*x)/2]] - 2*a*C*(b + a*Cos[c + d*x])*Log[Cos[(c + d*x)/2] 
+ Sin[(c + d*x)/2]] + (b*C*(b + a*Cos[c + d*x])*Sin[(c + d*x)/2])/(Cos[(c 
+ d*x)/2] - Sin[(c + d*x)/2]) + (b*C*(b + a*Cos[c + d*x])*Sin[(c + d*x)/2] 
)/(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + (a*b*(A*b^2 + a^2*C)*Sin[c + d*x 
])/((a - b)*(a + b))))/(b^3*d*(A + 2*C + A*Cos[2*(c + d*x)])*(a + b*Sec[c 
+ d*x])^2)
 

Rubi [A] (verified)

Time = 1.20 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.21, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 4579, 25, 3042, 4570, 3042, 4486, 3042, 4257, 4318, 3042, 3138, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4579

\(\displaystyle \frac {\int -\frac {\sec (c+d x) \left (-b \left (a^2-b^2\right ) C \sec ^2(c+d x)+a \left (a^2-b^2\right ) C \sec (c+d x)+b \left (C a^2+A b^2\right )\right )}{a+b \sec (c+d x)}dx}{b^2 \left (a^2-b^2\right )}+\frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\int \frac {\sec (c+d x) \left (-b \left (a^2-b^2\right ) C \sec ^2(c+d x)+a \left (a^2-b^2\right ) C \sec (c+d x)+b \left (C a^2+A b^2\right )\right )}{a+b \sec (c+d x)}dx}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (-b \left (a^2-b^2\right ) C \csc \left (c+d x+\frac {\pi }{2}\right )^2+a \left (a^2-b^2\right ) C \csc \left (c+d x+\frac {\pi }{2}\right )+b \left (C a^2+A b^2\right )\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4570

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\int \frac {\sec (c+d x) \left (\left (C a^2+A b^2\right ) b^2+2 a \left (a^2-b^2\right ) C \sec (c+d x) b\right )}{a+b \sec (c+d x)}dx}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\left (C a^2+A b^2\right ) b^2+2 a \left (a^2-b^2\right ) C \csc \left (c+d x+\frac {\pi }{2}\right ) b\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4486

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {2 a C \left (a^2-b^2\right ) \int \sec (c+d x)dx+\left (-2 a^4 C+3 a^2 b^2 C+A b^4\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)}dx}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {2 a C \left (a^2-b^2\right ) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\left (-2 a^4 C+3 a^2 b^2 C+A b^4\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\left (-2 a^4 C+3 a^2 b^2 C+A b^4\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a C \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{d}}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4318

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {\left (-2 a^4 C+3 a^2 b^2 C+A b^4\right ) \int \frac {1}{\frac {a \cos (c+d x)}{b}+1}dx}{b}+\frac {2 a C \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{d}}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {\left (-2 a^4 C+3 a^2 b^2 C+A b^4\right ) \int \frac {1}{\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{b}+1}dx}{b}+\frac {2 a C \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{d}}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {2 \left (-2 a^4 C+3 a^2 b^2 C+A b^4\right ) \int \frac {1}{\left (1-\frac {a}{b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right )+\frac {a+b}{b}}d\tan \left (\frac {1}{2} (c+d x)\right )}{b d}+\frac {2 a C \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{d}}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {a \left (a^2 C+A b^2\right ) \tan (c+d x)}{b^2 d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\frac {\frac {2 a C \left (a^2-b^2\right ) \text {arctanh}(\sin (c+d x))}{d}+\frac {2 \left (-2 a^4 C+3 a^2 b^2 C+A b^4\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{d \sqrt {a-b} \sqrt {a+b}}}{b}-\frac {C \left (a^2-b^2\right ) \tan (c+d x)}{d}}{b^2 \left (a^2-b^2\right )}\)

Input:

Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x])^2,x]
 

Output:

(a*(A*b^2 + a^2*C)*Tan[c + d*x])/(b^2*(a^2 - b^2)*d*(a + b*Sec[c + d*x])) 
- (((2*a*(a^2 - b^2)*C*ArcTanh[Sin[c + d*x]])/d + (2*(A*b^4 - 2*a^4*C + 3* 
a^2*b^2*C)*ArcTanh[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(Sqrt[a - 
b]*Sqrt[a + b]*d))/b - ((a^2 - b^2)*C*Tan[c + d*x])/d)/(b^2*(a^2 - b^2))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4318
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbo 
l] :> Simp[1/b   Int[1/(1 + (a/b)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, 
f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4486
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[( 
e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[B/b   Int[Csc[e + f*x], 
 x], x] + Simp[(A*b - a*B)/b   Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x 
] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]
 

rule 4570
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e 
_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_S 
ymbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2) 
)), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[ 
b*A*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; 
 FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]
 

rule 4579
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(cs 
c[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*(A*b^2 + a^2* 
C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), 
 x] - Simp[1/(b^2*(m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*Csc[e + f* 
x])^(m + 1)*Simp[b*(m + 1)*(a^2*C + A*b^2) - a*(A*b^2*(m + 2) + C*(a^2 + b^ 
2*(m + 1)))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x], 
x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
 
Maple [A] (verified)

Time = 0.65 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.52

method result size
derivativedivides \(\frac {\frac {-\frac {2 a b \left (A \,b^{2}+C \,a^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right )}-\frac {2 \left (A \,b^{4}-2 a^{4} C +3 C \,a^{2} b^{2}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a +b \right ) \left (a -b \right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{b^{3}}-\frac {C}{b^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {2 C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{3}}+\frac {2 C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{3}}-\frac {C}{b^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(232\)
default \(\frac {\frac {-\frac {2 a b \left (A \,b^{2}+C \,a^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right )}-\frac {2 \left (A \,b^{4}-2 a^{4} C +3 C \,a^{2} b^{2}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a +b \right ) \left (a -b \right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{b^{3}}-\frac {C}{b^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {2 C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{b^{3}}+\frac {2 C a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{b^{3}}-\frac {C}{b^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(232\)
risch \(\frac {2 i \left (A \,b^{3} {\mathrm e}^{3 i \left (d x +c \right )}+C \,a^{2} b \,{\mathrm e}^{3 i \left (d x +c \right )}+A a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+2 C \,a^{3} {\mathrm e}^{2 i \left (d x +c \right )}-C a \,b^{2} {\mathrm e}^{2 i \left (d x +c \right )}+A \,b^{3} {\mathrm e}^{i \left (d x +c \right )}+3 C \,a^{2} b \,{\mathrm e}^{i \left (d x +c \right )}-2 C \,b^{3} {\mathrm e}^{i \left (d x +c \right )}+a A \,b^{2}+2 a^{3} C -C a \,b^{2}\right )}{d \,b^{2} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) \left (a^{2}-b^{2}\right ) \left ({\mathrm e}^{2 i \left (d x +c \right )} a +2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )}+\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) A}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) a^{4} C}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,b^{3}}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {-i a^{2}+i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) C \,a^{2}}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d b}-\frac {b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) A}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) a^{4} C}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,b^{3}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{a \sqrt {a^{2}-b^{2}}}\right ) C \,a^{2}}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d b}+\frac {2 C a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{b^{3} d}-\frac {2 C a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{b^{3} d}\) \(759\)

Input:

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x,method=_RETURNVER 
BOSE)
 

Output:

1/d*(2/b^3*(-a*b*(A*b^2+C*a^2)/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1 
/2*c)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)-(A*b^4-2*C*a^4+3*C*a^2*b^2)/(a+b)/(a 
-b)/((a+b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/ 
2)))-C/b^2/(tan(1/2*d*x+1/2*c)+1)-2*C*a/b^3*ln(tan(1/2*d*x+1/2*c)+1)+2*C*a 
/b^3*ln(tan(1/2*d*x+1/2*c)-1)-C/b^2/(tan(1/2*d*x+1/2*c)-1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 396 vs. \(2 (145) = 290\).

Time = 1.63 (sec) , antiderivative size = 852, normalized size of antiderivative = 5.57 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x, algorithm= 
"fricas")
 

Output:

[1/2*(((2*C*a^5 - 3*C*a^3*b^2 - A*a*b^4)*cos(d*x + c)^2 + (2*C*a^4*b - 3*C 
*a^2*b^3 - A*b^5)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - 
(a^2 - 2*b^2)*cos(d*x + c)^2 + 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin( 
d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - 
 2*((C*a^6 - 2*C*a^4*b^2 + C*a^2*b^4)*cos(d*x + c)^2 + (C*a^5*b - 2*C*a^3* 
b^3 + C*a*b^5)*cos(d*x + c))*log(sin(d*x + c) + 1) + 2*((C*a^6 - 2*C*a^4*b 
^2 + C*a^2*b^4)*cos(d*x + c)^2 + (C*a^5*b - 2*C*a^3*b^3 + C*a*b^5)*cos(d*x 
 + c))*log(-sin(d*x + c) + 1) + 2*(C*a^4*b^2 - 2*C*a^2*b^4 + C*b^6 + (2*C* 
a^5*b + (A - 3*C)*a^3*b^3 - (A - C)*a*b^5)*cos(d*x + c))*sin(d*x + c))/((a 
^5*b^3 - 2*a^3*b^5 + a*b^7)*d*cos(d*x + c)^2 + (a^4*b^4 - 2*a^2*b^6 + b^8) 
*d*cos(d*x + c)), (((2*C*a^5 - 3*C*a^3*b^2 - A*a*b^4)*cos(d*x + c)^2 + (2* 
C*a^4*b - 3*C*a^2*b^3 - A*b^5)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt 
(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a^2 - b^2)*sin(d*x + c))) - ((C*a^6 - 
2*C*a^4*b^2 + C*a^2*b^4)*cos(d*x + c)^2 + (C*a^5*b - 2*C*a^3*b^3 + C*a*b^5 
)*cos(d*x + c))*log(sin(d*x + c) + 1) + ((C*a^6 - 2*C*a^4*b^2 + C*a^2*b^4) 
*cos(d*x + c)^2 + (C*a^5*b - 2*C*a^3*b^3 + C*a*b^5)*cos(d*x + c))*log(-sin 
(d*x + c) + 1) + (C*a^4*b^2 - 2*C*a^2*b^4 + C*b^6 + (2*C*a^5*b + (A - 3*C) 
*a^3*b^3 - (A - C)*a*b^5)*cos(d*x + c))*sin(d*x + c))/((a^5*b^3 - 2*a^3*b^ 
5 + a*b^7)*d*cos(d*x + c)^2 + (a^4*b^4 - 2*a^2*b^6 + b^8)*d*cos(d*x + c))]
 

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**2,x)
 

Output:

Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**2/(a + b*sec(c + d*x))**2, 
x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x, algorithm= 
"maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?` f 
or more de
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 382 vs. \(2 (145) = 290\).

Time = 0.28 (sec) , antiderivative size = 382, normalized size of antiderivative = 2.50 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx=\frac {2 \, {\left (\frac {{\left (2 \, C a^{4} - 3 \, C a^{2} b^{2} - A b^{4}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{2} b^{3} - b^{5}\right )} \sqrt {-a^{2} + b^{2}}} - \frac {C a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{b^{3}} + \frac {C a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{b^{3}} - \frac {2 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - C a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - C a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + C b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - C a^{2} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - A a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + C a b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + C b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )} {\left (a^{2} b^{2} - b^{4}\right )}}\right )}}{d} \] Input:

integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x, algorithm= 
"giac")
 

Output:

2*((2*C*a^4 - 3*C*a^2*b^2 - A*b^4)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(- 
2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqr 
t(-a^2 + b^2)))/((a^2*b^3 - b^5)*sqrt(-a^2 + b^2)) - C*a*log(abs(tan(1/2*d 
*x + 1/2*c) + 1))/b^3 + C*a*log(abs(tan(1/2*d*x + 1/2*c) - 1))/b^3 - (2*C* 
a^3*tan(1/2*d*x + 1/2*c)^3 - C*a^2*b*tan(1/2*d*x + 1/2*c)^3 + A*a*b^2*tan( 
1/2*d*x + 1/2*c)^3 - C*a*b^2*tan(1/2*d*x + 1/2*c)^3 + C*b^3*tan(1/2*d*x + 
1/2*c)^3 - 2*C*a^3*tan(1/2*d*x + 1/2*c) - C*a^2*b*tan(1/2*d*x + 1/2*c) - A 
*a*b^2*tan(1/2*d*x + 1/2*c) + C*a*b^2*tan(1/2*d*x + 1/2*c) + C*b^3*tan(1/2 
*d*x + 1/2*c))/((a*tan(1/2*d*x + 1/2*c)^4 - b*tan(1/2*d*x + 1/2*c)^4 - 2*a 
*tan(1/2*d*x + 1/2*c)^2 + a + b)*(a^2*b^2 - b^4)))/d
 

Mupad [B] (verification not implemented)

Time = 19.25 (sec) , antiderivative size = 4105, normalized size of antiderivative = 26.83 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^2),x)
 

Output:

(C*a*atan(((C*a*((32*tan(c/2 + (d*x)/2)*(A^2*b^8 + 8*C^2*a^8 - 8*C^2*a^7*b 
 + 4*C^2*a^2*b^6 - 8*C^2*a^3*b^5 + 5*C^2*a^4*b^4 + 16*C^2*a^5*b^3 - 16*C^2 
*a^6*b^2 + 6*A*C*a^2*b^6 - 4*A*C*a^4*b^4))/(a*b^6 + b^7 - a^2*b^5 - a^3*b^ 
4) - (2*C*a*((32*(A*b^12 - A*a^2*b^10 + A*a^3*b^9 + 3*C*a^2*b^10 + 3*C*a^3 
*b^9 - 5*C*a^4*b^8 - C*a^5*b^7 + 2*C*a^6*b^6 - A*a*b^11 - 2*C*a*b^11))/(a* 
b^8 + b^9 - a^2*b^7 - a^3*b^6) - (64*C*a*tan(c/2 + (d*x)/2)*(2*a*b^11 - 2* 
a^2*b^10 - 4*a^3*b^9 + 4*a^4*b^8 + 2*a^5*b^7 - 2*a^6*b^6))/(b^3*(a*b^6 + b 
^7 - a^2*b^5 - a^3*b^4))))/b^3)*2i)/b^3 + (C*a*((32*tan(c/2 + (d*x)/2)*(A^ 
2*b^8 + 8*C^2*a^8 - 8*C^2*a^7*b + 4*C^2*a^2*b^6 - 8*C^2*a^3*b^5 + 5*C^2*a^ 
4*b^4 + 16*C^2*a^5*b^3 - 16*C^2*a^6*b^2 + 6*A*C*a^2*b^6 - 4*A*C*a^4*b^4))/ 
(a*b^6 + b^7 - a^2*b^5 - a^3*b^4) + (2*C*a*((32*(A*b^12 - A*a^2*b^10 + A*a 
^3*b^9 + 3*C*a^2*b^10 + 3*C*a^3*b^9 - 5*C*a^4*b^8 - C*a^5*b^7 + 2*C*a^6*b^ 
6 - A*a*b^11 - 2*C*a*b^11))/(a*b^8 + b^9 - a^2*b^7 - a^3*b^6) + (64*C*a*ta 
n(c/2 + (d*x)/2)*(2*a*b^11 - 2*a^2*b^10 - 4*a^3*b^9 + 4*a^4*b^8 + 2*a^5*b^ 
7 - 2*a^6*b^6))/(b^3*(a*b^6 + b^7 - a^2*b^5 - a^3*b^4))))/b^3)*2i)/b^3)/(( 
64*(8*C^3*a^8 - 4*C^3*a^7*b + 12*C^3*a^4*b^4 + 6*C^3*a^5*b^3 - 20*C^3*a^6* 
b^2 + 2*A^2*C*a*b^7 + 4*A*C^2*a^2*b^6 + 8*A*C^2*a^3*b^5 - 4*A*C^2*a^4*b^4 
- 4*A*C^2*a^5*b^3))/(a*b^8 + b^9 - a^2*b^7 - a^3*b^6) + (2*C*a*((32*tan(c/ 
2 + (d*x)/2)*(A^2*b^8 + 8*C^2*a^8 - 8*C^2*a^7*b + 4*C^2*a^2*b^6 - 8*C^2*a^ 
3*b^5 + 5*C^2*a^4*b^4 + 16*C^2*a^5*b^3 - 16*C^2*a^6*b^2 + 6*A*C*a^2*b^6...
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 1226, normalized size of antiderivative = 8.01 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^2} \, dx =\text {Too large to display} \] Input:

int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^2,x)
 

Output:

(4*sqrt( - a**2 + b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqr 
t( - a**2 + b**2))*cos(c + d*x)*a**4*b*c - 6*sqrt( - a**2 + b**2)*atan((ta 
n((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( - a**2 + b**2))*cos(c + d*x)* 
a**2*b**3*c - 2*sqrt( - a**2 + b**2)*atan((tan((c + d*x)/2)*a - tan((c + d 
*x)/2)*b)/sqrt( - a**2 + b**2))*cos(c + d*x)*a*b**5 - 4*sqrt( - a**2 + b** 
2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( - a**2 + b**2))*si 
n(c + d*x)**2*a**5*c + 6*sqrt( - a**2 + b**2)*atan((tan((c + d*x)/2)*a - t 
an((c + d*x)/2)*b)/sqrt( - a**2 + b**2))*sin(c + d*x)**2*a**3*b**2*c + 2*s 
qrt( - a**2 + b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( - 
 a**2 + b**2))*sin(c + d*x)**2*a**2*b**4 + 4*sqrt( - a**2 + b**2)*atan((ta 
n((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( - a**2 + b**2))*a**5*c - 6*sq 
rt( - a**2 + b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/sqrt( - 
a**2 + b**2))*a**3*b**2*c - 2*sqrt( - a**2 + b**2)*atan((tan((c + d*x)/2)* 
a - tan((c + d*x)/2)*b)/sqrt( - a**2 + b**2))*a**2*b**4 + 2*cos(c + d*x)*l 
og(tan((c + d*x)/2) - 1)*a**5*b*c - 4*cos(c + d*x)*log(tan((c + d*x)/2) - 
1)*a**3*b**3*c + 2*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a*b**5*c - 2*cos 
(c + d*x)*log(tan((c + d*x)/2) + 1)*a**5*b*c + 4*cos(c + d*x)*log(tan((c + 
 d*x)/2) + 1)*a**3*b**3*c - 2*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a*b** 
5*c + 2*cos(c + d*x)*sin(c + d*x)*a**5*b*c + cos(c + d*x)*sin(c + d*x)*a** 
4*b**3 - 3*cos(c + d*x)*sin(c + d*x)*a**3*b**3*c - cos(c + d*x)*sin(c +...