\(\int \sqrt {a+b \sec (c+d x)} (a^2-b^2 \sec ^2(c+d x)) \, dx\) [734]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 353 \[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 d}+\frac {2 \sqrt {a+b} \left (3 a^2+a b-b^2\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac {2 a^2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 b^2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d} \] Output:

2/3*a*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^ 
(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c 
))/(a-b))^(1/2)/d+2/3*(a+b)^(1/2)*(3*a^2+a*b-b^2)*cot(d*x+c)*EllipticF((a+ 
b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+ 
b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-2*a^2*(a+b)^(1/2)*cot(d*x+c)*E 
llipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))* 
(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-2/3*b^2*( 
a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d
 

Mathematica [A] (warning: unable to verify)

Time = 11.20 (sec) , antiderivative size = 414, normalized size of antiderivative = 1.17 \[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=\frac {\cos ^2(c+d x) \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \left (\frac {4 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (2 a b (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-2 \left (3 a^3-3 a^2 b+a b^2+b^3\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+12 a^3 \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+a b \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b+a \cos (c+d x)}-4 b (b+a \cos (c+d x)) \tan (c+d x)\right )}{3 d \left (a^2-2 b^2+a^2 \cos (2 (c+d x))\right )} \] Input:

Integrate[Sqrt[a + b*Sec[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2),x]
 

Output:

(Cos[c + d*x]^2*Sqrt[a + b*Sec[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2)*((4*Co 
s[(c + d*x)/2]^2*(2*a*b*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt 
[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[( 
c + d*x)/2]], (a - b)/(a + b)] - 2*(3*a^3 - 3*a^2*b + a*b^2 + b^3)*Sqrt[Co 
s[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos 
[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 12*a^3 
*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)* 
(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + 
 b)] + a*b*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d 
*x)/2]))/(b + a*Cos[c + d*x]) - 4*b*(b + a*Cos[c + d*x])*Tan[c + d*x]))/(3 
*d*(a^2 - 2*b^2 + a^2*Cos[2*(c + d*x)]))
 

Rubi [A] (verified)

Time = 1.30 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {3042, 4530, 25, 3042, 4406, 27, 3042, 4546, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (a^2-b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4530

\(\displaystyle -\int -\left ((a-b \sec (c+d x)) (a+b \sec (c+d x))^{3/2}\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int (a-b \sec (c+d x)) (a+b \sec (c+d x))^{3/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a-b \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx\)

\(\Big \downarrow \) 4406

\(\displaystyle \frac {2}{3} \int \frac {3 a^3-b^2 \sec ^2(c+d x) a+b \left (3 a^2-b^2\right ) \sec (c+d x)}{2 \sqrt {a+b \sec (c+d x)}}dx-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {3 a^3-b^2 \sec ^2(c+d x) a+b \left (3 a^2-b^2\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 a^3-b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2 a+b \left (3 a^2-b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4546

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a^3+\left (a b^2+\left (3 a^2-b^2\right ) b\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx-a b^2 \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx\right )-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\int \frac {3 a^3+\left (a b^2+\left (3 a^2-b^2\right ) b\right ) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4409

\(\displaystyle \frac {1}{3} \left (3 a^3 \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx+b \left (3 a^2+a b-b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx-a b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a^3 \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+b \left (3 a^2+a b-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {1}{3} \left (b \left (3 a^2+a b-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\right )-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {1}{3} \left (-a b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \left (3 a^2+a b-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {6 a^2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\right )-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {1}{3} \left (\frac {2 \sqrt {a+b} \left (3 a^2+a b-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}-\frac {6 a^2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}+\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}\right )-\frac {2 b^2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

Input:

Int[Sqrt[a + b*Sec[c + d*x]]*(a^2 - b^2*Sec[c + d*x]^2),x]
 

Output:

((2*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + 
 d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)] 
*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*Sqrt[a + b]*(3*a^2 + a*b 
- b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]] 
, (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec 
[c + d*x]))/(a - b))])/d - (6*a^2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + 
 b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt 
[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/ 
d)/3 - (2*b^2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4406
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d 
_.) + (c_)), x_Symbol] :> Simp[(-b)*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m 
 - 1)/(f*m)), x] + Simp[1/m   Int[(a + b*Csc[e + f*x])^(m - 2)*Simp[a^2*c*m 
 + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)*Csc[e + f*x] + b*(b*c*m + a*d*(2*m 
 - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b* 
c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4530
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_.), x_Symbol] :> Simp[C/b^2   Int[(a + b*Csc[e + f*x])^(m + 1) 
*Simp[-a + b*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && 
 EqQ[A*b^2 + a^2*C, 0]
 

rule 4546
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A + (B - C 
)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Simp[C   Int[Csc[e + f*x]*(( 
1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A 
, B, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(685\) vs. \(2(318)=636\).

Time = 35.34 (sec) , antiderivative size = 686, normalized size of antiderivative = 1.94

method result size
parts \(\frac {2 a^{2} \left (\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a -\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b -2 a \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )\right ) \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {a +b \sec \left (d x +c \right )}}{d \left (b +a \cos \left (d x +c \right )\right )}+\frac {2 b \sqrt {a +b \sec \left (d x +c \right )}\, \left (\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a^{2} \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, b^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )-a^{2} \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right ) \left (-\cos \left (d x +c \right )-2\right ) a b +b^{2} \left (-\sin \left (d x +c \right )-\tan \left (d x +c \right )\right )\right )}{3 d \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(686\)
default \(\frac {2 \sqrt {a +b \sec \left (d x +c \right )}\, \left (6 \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a^{3} \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, a^{2} b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \,b^{2} \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+3 \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a^{3} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+3 \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a^{2} b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, a \,b^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, b^{3} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )-a^{2} b \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right ) \left (-\cos \left (d x +c \right )-2\right ) a \,b^{2}+b^{3} \left (-\sin \left (d x +c \right )-\tan \left (d x +c \right )\right )\right )}{3 d \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(811\)

Input:

int((a+b*sec(d*x+c))^(1/2)*(a^2-b^2*sec(d*x+c)^2),x,method=_RETURNVERBOSE)
 

Output:

2*a^2/d*(EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a-EllipticF 
(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*b-2*a*EllipticPi(-csc(d*x+c)+ 
cot(d*x+c),-1,((a-b)/(a+b))^(1/2)))*(cos(d*x+c)+1)*(cos(d*x+c)/(cos(d*x+c) 
+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(a+b*sec(d*x+c) 
)^(1/2)/(b+a*cos(d*x+c))+2/3*b/d*(a+b*sec(d*x+c))^(1/2)/(cos(d*x+c)^2*a+a* 
cos(d*x+c)+b*cos(d*x+c)+b)*((-cos(d*x+c)^2-2*cos(d*x+c)-1)*(1/(a+b)*(b+a*c 
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*Ell 
ipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d* 
x+c)-1)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d 
*x+c)+1))^(1/2)*a*b*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+ 
(cos(d*x+c)^2+2*cos(d*x+c)+1)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1 
/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b*EllipticF(-csc(d*x+c)+cot(d*x+c) 
,((a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*(1/(a+b)*(b+a*cos(d*x+ 
c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^2*EllipticF( 
-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))-a^2*cos(d*x+c)*sin(d*x+c)+sin( 
d*x+c)*(-cos(d*x+c)-2)*a*b+b^2*(-sin(d*x+c)-tan(d*x+c)))
 

Fricas [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=\int { -{\left (b^{2} \sec \left (d x + c\right )^{2} - a^{2}\right )} \sqrt {b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^(1/2)*(a^2-b^2*sec(d*x+c)^2),x, algorithm="fric 
as")
 

Output:

integral(-(b^2*sec(d*x + c)^2 - a^2)*sqrt(b*sec(d*x + c) + a), x)
 

Sympy [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=\int \left (a - b \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx \] Input:

integrate((a+b*sec(d*x+c))**(1/2)*(a**2-b**2*sec(d*x+c)**2),x)
 

Output:

Integral((a - b*sec(c + d*x))*(a + b*sec(c + d*x))**(3/2), x)
 

Maxima [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=\int { -{\left (b^{2} \sec \left (d x + c\right )^{2} - a^{2}\right )} \sqrt {b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^(1/2)*(a^2-b^2*sec(d*x+c)^2),x, algorithm="maxi 
ma")
 

Output:

-integrate((b^2*sec(d*x + c)^2 - a^2)*sqrt(b*sec(d*x + c) + a), x)
 

Giac [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=\int { -{\left (b^{2} \sec \left (d x + c\right )^{2} - a^{2}\right )} \sqrt {b \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^(1/2)*(a^2-b^2*sec(d*x+c)^2),x, algorithm="giac 
")
 

Output:

integrate(-(b^2*sec(d*x + c)^2 - a^2)*sqrt(b*sec(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=-\int -\left (a^2-\frac {b^2}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int((a^2 - b^2/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2),x)
 

Output:

-int(-(a^2 - b^2/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {a+b \sec (c+d x)} \left (a^2-b^2 \sec ^2(c+d x)\right ) \, dx=\left (\int \sqrt {\sec \left (d x +c \right ) b +a}d x \right ) a^{2}-\left (\int \sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}d x \right ) b^{2} \] Input:

int((a+b*sec(d*x+c))^(1/2)*(a^2-b^2*sec(d*x+c)^2),x)
 

Output:

int(sqrt(sec(c + d*x)*b + a),x)*a**2 - int(sqrt(sec(c + d*x)*b + a)*sec(c 
+ d*x)**2,x)*b**2