\(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [738]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 313 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} C \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}-\frac {2 \sqrt {a+b} C \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d} \] Output:

-2*(a-b)*(a+b)^(1/2)*C*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^( 
1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c) 
)/(a-b))^(1/2)/b^2/d-2*(a+b)^(1/2)*C*cot(d*x+c)*EllipticF((a+b*sec(d*x+c)) 
^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b 
*(1+sec(d*x+c))/(a-b))^(1/2)/b/d-2*A*(a+b)^(1/2)*cot(d*x+c)*EllipticPi((a+ 
b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x 
+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(729\) vs. \(2(313)=626\).

Time = 14.87 (sec) , antiderivative size = 729, normalized size of antiderivative = 2.33 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

Integrate[(A + C*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]
 

Output:

(4*C*Cos[c + d*x]*(b + a*Cos[c + d*x])*(A + C*Sec[c + d*x]^2)*Sin[c + d*x] 
)/(b*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[a + b*Sec[c + d*x]]) + (4*Sqrt[ 
b + a*Cos[c + d*x]]*(A + C*Sec[c + d*x]^2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^( 
-1)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(-(a*C*Tan[(c + d*x)/2]*Sqrt[1 - Tan[(c 
+ d*x)/2]^2]) - b*C*Tan[(c + d*x)/2]*Sqrt[1 - Tan[(c + d*x)/2]^2] + a*C*Ta 
n[(c + d*x)/2]^3*Sqrt[1 - Tan[(c + d*x)/2]^2] - b*C*Tan[(c + d*x)/2]^3*Sqr 
t[1 - Tan[(c + d*x)/2]^2] + 2*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], 
 (a - b)/(a + b)]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^ 
2)/(a + b)] + 2*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + 
b)]*Tan[(c + d*x)/2]^2*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x 
)/2]^2)/(a + b)] - (a + b)*C*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/( 
a + b)]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Ta 
n[(c + d*x)/2]^2)/(a + b)] - b*(A - C)*EllipticF[ArcSin[Tan[(c + d*x)/2]], 
 (a - b)/(a + b)]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*x)/2 
]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(b*d*(A + 2*C + A*Cos[2*c + 2*d*x]) 
*Sec[c + d*x]^(3/2)*Sqrt[a + b*Sec[c + d*x]]*(1 + Tan[(c + d*x)/2]^2)^(3/2 
)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + 
 d*x)/2]^2)])
 

Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 313, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {3042, 4547, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4547

\(\displaystyle \int \frac {A-C \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+C \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A-C \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4409

\(\displaystyle A \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx+C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-C \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle A \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4271

\(\displaystyle -C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}\)

\(\Big \downarrow \) 4319

\(\displaystyle C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\)

\(\Big \downarrow \) 4492

\(\displaystyle -\frac {2 A \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}-\frac {2 C (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 C \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\)

Input:

Int[(A + C*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]
 

Output:

(-2*(a - b)*Sqrt[a + b]*C*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + 
 d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)] 
*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*C*Cot[c 
 + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a 
 - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/ 
(a - b))])/(b*d) - (2*A*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, Arc 
Sin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - S 
ec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4547
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]* 
(b_.) + (a_)], x_Symbol] :> Int[(A - C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x 
]], x] + Simp[C   Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f 
*x]]), x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 28.03 (sec) , antiderivative size = 513, normalized size of antiderivative = 1.64

method result size
parts \(\frac {2 A \left (\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )-2 \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )\right ) \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {a +b \sec \left (d x +c \right )}}{d \left (b +a \cos \left (d x +c \right )\right )}+\frac {2 C \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) a +\sin \left (d x +c \right ) b \right ) \sqrt {a +b \sec \left (d x +c \right )}}{d b \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(513\)
default \(\frac {\left (\cos \left (d x +c \right )+1\right )^{2} \left (\left (\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) C a +\left (-\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) C b -2 A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b +4 A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right ) b +2 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b -2 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a -2 C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b \right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{2 d b \left (b +a \cos \left (d x +c \right )\right )}\) \(553\)

Input:

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2*A/d*(EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))-2*EllipticPi( 
-csc(d*x+c)+cot(d*x+c),-1,((a-b)/(a+b))^(1/2)))*(cos(d*x+c)+1)*(cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(a+ 
b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))+2*C/d/b*((cos(d*x+c)^2+2*cos(d*x+c)+1 
)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+ 
1))^(1/2)*a*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(cos(d*x 
+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos( 
d*x+c))/(cos(d*x+c)+1))^(1/2)*b*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a 
+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*EllipticF(-csc(d*x+c) 
+cot(d*x+c),((a-b)/(a+b))^(1/2))+sin(d*x+c)*cos(d*x+c)*a+sin(d*x+c)*b)*(a+ 
b*sec(d*x+c))^(1/2)/(cos(d*x+c)^2*a+a*cos(d*x+c)+b*cos(d*x+c)+b)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)/sqrt(a + b*sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/sqrt(b*sec(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/sqrt(b*sec(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2),x)
 

Output:

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}}{\sec \left (d x +c \right ) b +a}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right ) b +a}d x \right ) c \] Input:

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x)
 

Output:

int(sqrt(sec(c + d*x)*b + a)/(sec(c + d*x)*b + a),x)*a + int((sqrt(sec(c + 
 d*x)*b + a)*sec(c + d*x)**2)/(sec(c + d*x)*b + a),x)*c