\(\int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [745]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 381 \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \left (A b^2+a^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b^2 \sqrt {a+b} d}-\frac {2 (A b-a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}-\frac {2 A \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {2 \left (A b^2+a^2 C\right ) \tan (c+d x)}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \] Output:

2*(A*b^2+C*a^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(( 
a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b) 
)^(1/2)/a/b^2/(a+b)^(1/2)/d-2*(A*b-C*a)*cot(d*x+c)*EllipticF((a+b*sec(d*x+ 
c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)* 
(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/(a+b)^(1/2)/d-2*A*(a+b)^(1/2)*cot(d*x+ 
c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/ 
2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+2 
*(A*b^2+C*a^2)*tan(d*x+c)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1119\) vs. \(2(381)=762\).

Time = 16.54 (sec) , antiderivative size = 1119, normalized size of antiderivative = 2.94 \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

Integrate[(A + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(3/2),x]
 

Output:

((b + a*Cos[c + d*x])^2*(A + C*Sec[c + d*x]^2)*((4*(A*b^2 + a^2*C)*Sin[c + 
 d*x])/(a*b*(-a^2 + b^2)) + (4*(A*b^2*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/ 
(a*(a^2 - b^2)*(b + a*Cos[c + d*x]))))/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*( 
a + b*Sec[c + d*x])^(3/2)) - (4*(b + a*Cos[c + d*x])^(3/2)*(A + C*Sec[c + 
d*x]^2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(a*A*b^2*Tan[(c + d*x)/2] + A* 
b^3*Tan[(c + d*x)/2] + a^3*C*Tan[(c + d*x)/2] + a^2*b*C*Tan[(c + d*x)/2] - 
 2*a*A*b^2*Tan[(c + d*x)/2]^3 - 2*a^3*C*Tan[(c + d*x)/2]^3 + a*A*b^2*Tan[( 
c + d*x)/2]^5 - A*b^3*Tan[(c + d*x)/2]^5 + a^3*C*Tan[(c + d*x)/2]^5 - a^2* 
b*C*Tan[(c + d*x)/2]^5 + 2*a^2*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]] 
, (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d 
*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*A*b^3*EllipticPi[-1, ArcSin[ 
Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + 
 b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*a^2*A*b*Ell 
ipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2* 
Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c 
 + d*x)/2]^2)/(a + b)] - 2*A*b^3*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], 
(a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + 
 b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + (a + b)*(A*b^ 
2 + a^2*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - T 
an[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c + d*...
 

Rubi [A] (verified)

Time = 1.43 (sec) , antiderivative size = 410, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.407, Rules used = {3042, 4549, 27, 3042, 4546, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4549

\(\displaystyle \frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {2 \int -\frac {-\left (\left (C a^2+A b^2\right ) \sec ^2(c+d x)\right )-a b (A+C) \sec (c+d x)+A \left (a^2-b^2\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {-\left (\left (C a^2+A b^2\right ) \sec ^2(c+d x)\right )-a b (A+C) \sec (c+d x)+A \left (a^2-b^2\right )}{\sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (-C a^2-A b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2-a b (A+C) \csc \left (c+d x+\frac {\pi }{2}\right )+A \left (a^2-b^2\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4546

\(\displaystyle \frac {\int \frac {A \left (a^2-b^2\right )+\left (C a^2-b (A+C) a+A b^2\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx-\left (a^2 C+A b^2\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A \left (a^2-b^2\right )+\left (C a^2-b (A+C) a+A b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\left (a^2 C+A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4409

\(\displaystyle \frac {-\left (\left (a^2 C+A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+A \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-(a-b) (A b-a C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\left (a^2 C+A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+A \left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (A b-a C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {-\left (a^2 C+A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (A b-a C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 A \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {-\left (a^2 C+A b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 A \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} (A b-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {\frac {2 (a-b) \sqrt {a+b} \left (a^2 C+A b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 A \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} (A b-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a \left (a^2-b^2\right )}+\frac {2 \left (a^2 C+A b^2\right ) \tan (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

Input:

Int[(A + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(3/2),x]
 

Output:

((2*(a - b)*Sqrt[a + b]*(A*b^2 + a^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt 
[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d 
*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*(a - 
b)*Sqrt[a + b]*(A*b - a*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c 
+ d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b) 
]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) - (2*A*Sqrt[a + b]*(a^2 - 
 b^2)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/S 
qrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-( 
(b*(1 + Sec[c + d*x]))/(a - b))])/(a*d))/(a*(a^2 - b^2)) + (2*(A*b^2 + a^2 
*C)*Tan[c + d*x])/(a*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4546
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A + (B - C 
)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Simp[C   Int[Csc[e + f*x]*(( 
1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A 
, B, C}, x] && NeQ[a^2 - b^2, 0]
 

rule 4549
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 + a^2*C)*Cot[e + f*x]*((a + b*Csc[ 
e + f*x])^(m + 1)/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 - 
 b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m + 1) - a*b* 
(A + C)*(m + 1)*Csc[e + f*x] + (A*b^2 + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], 
x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m 
] && LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1087\) vs. \(2(352)=704\).

Time = 25.10 (sec) , antiderivative size = 1088, normalized size of antiderivative = 2.86

method result size
default \(\text {Expression too large to display}\) \(1088\)
parts \(\text {Expression too large to display}\) \(1146\)

Input:

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/d/a/b/(a+b)/(a-b)*((-(1-cos(d*x+c))^3*csc(d*x+c)^3+csc(d*x+c)-cot(d*x+c) 
)*b^2*a*A+((1-cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x+c))*b*a^2*C+(( 
1-cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x+c))*b^3*A+(-(1-cos(d*x+c)) 
^3*csc(d*x+c)^3+csc(d*x+c)-cot(d*x+c))*a^3*C-2*A*(cos(d*x+c)/(cos(d*x+c)+1 
))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(-csc(d* 
x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*A*(cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(-csc(d*x+ 
c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*A*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(-csc(d*x+c) 
+cot(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/ 
2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(-csc(d*x+c)+c 
ot(d*x+c),((a-b)/(a+b))^(1/2))*b^3+4*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*( 
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(-csc(d*x+c)+cot( 
d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*b-4*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticPi(-csc(d*x+c)+co 
t(d*x+c),-1,((a-b)/(a+b))^(1/2))*b^3-2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2) 
*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(-csc(d*x+c)+cot 
(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*( 
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(-csc(d*x+c)+cot(d 
*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*...
 

Fricas [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

integral((C*sec(d*x + c)^2 + A)*sqrt(b*sec(d*x + c) + a)/(b^2*sec(d*x + c) 
^2 + 2*a*b*sec(d*x + c) + a^2), x)
 

Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3/2),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)/(a + b*sec(c + d*x))**(3/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(3/2),x)
 

Output:

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}}{\sec \left (d x +c \right )^{2} b^{2}+2 \sec \left (d x +c \right ) a b +a^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2} b^{2}+2 \sec \left (d x +c \right ) a b +a^{2}}d x \right ) c \] Input:

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x)
 

Output:

int(sqrt(sec(c + d*x)*b + a)/(sec(c + d*x)**2*b**2 + 2*sec(c + d*x)*a*b + 
a**2),x)*a + int((sqrt(sec(c + d*x)*b + a)*sec(c + d*x)**2)/(sec(c + d*x)* 
*2*b**2 + 2*sec(c + d*x)*a*b + a**2),x)*c