\(\int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [755]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 32, antiderivative size = 303 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 b \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 a \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d} \] Output:

2*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2 
),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/( 
a-b))^(1/2)/d+2*b*(a+b)^(1/2)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/ 
(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec 
(d*x+c))/(a-b))^(1/2)/d-2*a*(a+b)^(1/2)*cot(d*x+c)*EllipticPi((a+b*sec(d*x 
+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b 
))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(4119\) vs. \(2(303)=606\).

Time = 23.48 (sec) , antiderivative size = 4119, normalized size of antiderivative = 13.59 \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Result too large to show} \] Input:

Integrate[(a^2 - b^2*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]
 

Output:

(-4*b*Cos[c + d*x]*(b + a*Cos[c + d*x])*(a^2 - b^2*Sec[c + d*x]^2)*Sin[c + 
 d*x])/(d*(a^2 - 2*b^2 + a^2*Cos[2*c + 2*d*x])*Sqrt[a + b*Sec[c + d*x]]) + 
 (((2*a^2)/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2*b^2)/(Sqrt[b 
 + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) + (2*a*b*Sqrt[Sec[c + d*x]])/Sqrt[b 
 + a*Cos[c + d*x]] + (2*a*b*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/Sqrt[b + 
a*Cos[c + d*x]])*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(a^2 - b^2*Sec[c + 
d*x]^2)*(4*b*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos 
[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2] 
], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2 - 4*(a^2 + b^2)*Sqrt[Cos[c + d*x]/( 
1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))] 
*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + d*x)/2]^2 + 
 8*a^2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sec[(c + 
d*x)/2]^2*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + b) 
*(1 + Sec[c + d*x]))] - 8*a*b*Csc[c + d*x]^3*Sin[(c + d*x)/2]^4 + 16*b^2*C 
sc[c + d*x]^3*Sin[(c + d*x)/2]^4 + 32*a*b*Csc[c + d*x]^5*Sin[(c + d*x)/2]^ 
8 - 64*b^2*Csc[c + d*x]^5*Sin[(c + d*x)/2]^8 + 3*a*b*Tan[(c + d*x)/2] - 4* 
a*b*Tan[(c + d*x)/2]^3 + a*b*Tan[(c + d*x)/2]^5))/(Sqrt[2]*d*((1 + Cos[c + 
 d*x])^(-1))^(3/2)*(a^2 - 2*b^2 + a^2*Cos[2*c + 2*d*x])*Sec[c + d*x]^(3/2) 
*Sqrt[a + b*Sec[c + d*x]]*((a*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sin[c 
+ d*x]*(4*b*(a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*C...
 

Rubi [A] (verified)

Time = 1.03 (sec) , antiderivative size = 314, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.406, Rules used = {3042, 4530, 25, 3042, 4404, 25, 27, 3042, 4271, 4324, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a^2-b^2 \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4530

\(\displaystyle -\int -\left ((a-b \sec (c+d x)) \sqrt {a+b \sec (c+d x)}\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int (a-b \sec (c+d x)) \sqrt {a+b \sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a-b \csc \left (c+d x+\frac {\pi }{2}\right )\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4404

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx+\int -\frac {b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-\int \frac {b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-b^2 \int \frac {\sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-b^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4271

\(\displaystyle b^2 \left (-\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 4324

\(\displaystyle -\left (b^2 \left (\int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-\int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\left (b^2 \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 4319

\(\displaystyle -\left (b^2 \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

\(\Big \downarrow \) 4492

\(\displaystyle -\left (b^2 \left (-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )\right )-\frac {2 a \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\)

Input:

Int[(a^2 - b^2*Sec[c + d*x]^2)/Sqrt[a + b*Sec[c + d*x]],x]
 

Output:

(-2*a*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec 
[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + 
 b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d - b^2*((-2*(a - b)*Sqrt[a 
+ b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], 
(a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c 
 + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSi 
n[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec 
[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4324
Int[csc[(e_.) + (f_.)*(x_)]^2/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x 
_Symbol] :> -Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x] + Int[Csc[e + f* 
x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e, f}, 
 x] && NeQ[a^2 - b^2, 0]
 

rule 4404
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_ 
.) + (c_)), x_Symbol] :> Simp[a*c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] 
+ Int[Csc[e + f*x]*((b*c + a*d + b*d*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]] 
), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2 
, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4530
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_.), x_Symbol] :> Simp[C/b^2   Int[(a + b*Csc[e + f*x])^(m + 1) 
*Simp[-a + b*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && 
 EqQ[A*b^2 + a^2*C, 0]
 
Maple [A] (verified)

Time = 24.35 (sec) , antiderivative size = 514, normalized size of antiderivative = 1.70

method result size
parts \(-\frac {2 a^{2} \left (2 \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )-\operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )\right ) \left (\cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \sqrt {a +b \sec \left (d x +c \right )}}{d \left (b +a \cos \left (d x +c \right )\right )}-\frac {2 b \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) a +\sin \left (d x +c \right ) b \right ) \sqrt {a +b \sec \left (d x +c \right )}}{d \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(514\)
default \(-\frac {\left (\cos \left (d x +c \right )+1\right )^{2} \left (\left (-\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) b^{2}+\left (\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) a b +2 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a^{2}+2 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b^{2}-2 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a b -2 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b^{2}-4 \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (\cos \left (d x +c \right )+1\right )}}\, \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right ) a^{2}\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{2 d \left (b +a \cos \left (d x +c \right )\right )}\) \(555\)

Input:

int((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2*a^2/d*(2*EllipticPi(-csc(d*x+c)+cot(d*x+c),-1,((a-b)/(a+b))^(1/2))-Elli 
pticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2)))*(cos(d*x+c)+1)*(cos(d*x 
+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)* 
(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))-2*b/d*((cos(d*x+c)^2+2*cos(d*x+c)+ 
1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c) 
+1))^(1/2)*a*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(cos(d* 
x+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos 
(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/( 
a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1 
/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b*EllipticF(-csc(d*x+c 
)+cot(d*x+c),((a-b)/(a+b))^(1/2))+sin(d*x+c)*cos(d*x+c)*a+sin(d*x+c)*b)*(a 
+b*sec(d*x+c))^(1/2)/(cos(d*x+c)^2*a+a*cos(d*x+c)+b*cos(d*x+c)+b)
 

Fricas [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { -\frac {b^{2} \sec \left (d x + c\right )^{2} - a^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fric 
as")
 

Output:

integral(-sqrt(b*sec(d*x + c) + a)*(b*sec(d*x + c) - a), x)
 

Sympy [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \left (a - b \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}}\, dx \] Input:

integrate((a**2-b**2*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)
 

Output:

Integral((a - b*sec(c + d*x))*sqrt(a + b*sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { -\frac {b^{2} \sec \left (d x + c\right )^{2} - a^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxi 
ma")
 

Output:

-integrate((b^2*sec(d*x + c)^2 - a^2)/sqrt(b*sec(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { -\frac {b^{2} \sec \left (d x + c\right )^{2} - a^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac 
")
 

Output:

integrate(-(b^2*sec(d*x + c)^2 - a^2)/sqrt(b*sec(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\int -\frac {a^2-\frac {b^2}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((a^2 - b^2/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2),x)
 

Output:

-int(-(a^2 - b^2/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {a^2-b^2 \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\left (\int \sqrt {\sec \left (d x +c \right ) b +a}d x \right ) a -\left (\int \sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )d x \right ) b \] Input:

int((a^2-b^2*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x)
 

Output:

int(sqrt(sec(c + d*x)*b + a),x)*a - int(sqrt(sec(c + d*x)*b + a)*sec(c + d 
*x),x)*b