\(\int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx\) [763]

Optimal result
Mathematica [F(-1)]
Rubi [N/A]
Maple [N/A]
Fricas [F(-1)]
Sympy [N/A]
Maxima [N/A]
Giac [N/A]
Mupad [N/A]
Reduce [N/A]

Optimal result

Integrand size = 27, antiderivative size = 27 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\frac {\sqrt {2} C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) (a+b \sec (c+d x))^{2/3} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}-\frac {\sqrt {2} a C \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right ) \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}} \tan (c+d x)}{b d \sqrt {1+\sec (c+d x)} \sqrt [3]{a+b \sec (c+d x)}}+A \text {Int}\left (\frac {1}{\sqrt [3]{a+b \sec (c+d x)}},x\right ) \] Output:

2^(1/2)*C*AppellF1(1/2,-2/3,1/2,3/2,b*(1-sec(d*x+c))/(a+b),1/2-1/2*sec(d*x 
+c))*(a+b*sec(d*x+c))^(2/3)*tan(d*x+c)/b/d/(1+sec(d*x+c))^(1/2)/((a+b*sec( 
d*x+c))/(a+b))^(2/3)-2^(1/2)*a*C*AppellF1(1/2,1/3,1/2,3/2,b*(1-sec(d*x+c)) 
/(a+b),1/2-1/2*sec(d*x+c))*((a+b*sec(d*x+c))/(a+b))^(1/3)*tan(d*x+c)/b/d/( 
1+sec(d*x+c))^(1/2)/(a+b*sec(d*x+c))^(1/3)+A*Defer(Int)(1/(a+b*sec(d*x+c)) 
^(1/3),x)
                                                                                    
                                                                                    
 

Mathematica [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\text {\$Aborted} \] Input:

Integrate[(A + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(1/3),x]
 

Output:

$Aborted
 

Rubi [N/A]

Not integrable

Time = 0.91 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {3042, 4551, 3042, 4321, 156, 155, 4412, 3042, 4273, 4321, 156, 155}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4551

\(\displaystyle \frac {\int \frac {A b-a C \sec (c+d x)}{\sqrt [3]{a+b \sec (c+d x)}}dx}{b}+\frac {C \int \sec (c+d x) (a+b \sec (c+d x))^{2/3}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A b-a C \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {C \int \csc \left (c+d x+\frac {\pi }{2}\right ) \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{2/3}dx}{b}\)

\(\Big \downarrow \) 4321

\(\displaystyle \frac {\int \frac {A b-a C \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {C \tan (c+d x) \int \frac {(a+b \sec (c+d x))^{2/3}}{\sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1}}d\sec (c+d x)}{b d \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1}}\)

\(\Big \downarrow \) 156

\(\displaystyle \frac {\int \frac {A b-a C \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}-\frac {C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \int \frac {\left (\frac {a}{a+b}+\frac {b \sec (c+d x)}{a+b}\right )^{2/3}}{\sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1}}d\sec (c+d x)}{b d \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

\(\Big \downarrow \) 155

\(\displaystyle \frac {\int \frac {A b-a C \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

\(\Big \downarrow \) 4412

\(\displaystyle \frac {A b \int \frac {1}{\sqrt [3]{a+b \sec (c+d x)}}dx-a C \int \frac {\sec (c+d x)}{\sqrt [3]{a+b \sec (c+d x)}}dx}{b}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A b \int \frac {1}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

\(\Big \downarrow \) 4273

\(\displaystyle \frac {A b \int \frac {1}{\sqrt [3]{a+b \sec (c+d x)}}dx-a C \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt [3]{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

\(\Big \downarrow \) 4321

\(\displaystyle \frac {A b \int \frac {1}{\sqrt [3]{a+b \sec (c+d x)}}dx+\frac {a C \tan (c+d x) \int \frac {1}{\sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} \sqrt [3]{a+b \sec (c+d x)}}d\sec (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1}}}{b}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

\(\Big \downarrow \) 156

\(\displaystyle \frac {A b \int \frac {1}{\sqrt [3]{a+b \sec (c+d x)}}dx+\frac {a C \tan (c+d x) \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}} \int \frac {1}{\sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} \sqrt [3]{\frac {a}{a+b}+\frac {b \sec (c+d x)}{a+b}}}d\sec (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {\sec (c+d x)+1} \sqrt [3]{a+b \sec (c+d x)}}}{b}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

\(\Big \downarrow \) 155

\(\displaystyle \frac {A b \int \frac {1}{\sqrt [3]{a+b \sec (c+d x)}}dx-\frac {\sqrt {2} a C \tan (c+d x) \sqrt [3]{\frac {a+b \sec (c+d x)}{a+b}} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{d \sqrt {\sec (c+d x)+1} \sqrt [3]{a+b \sec (c+d x)}}}{b}+\frac {\sqrt {2} C \tan (c+d x) (a+b \sec (c+d x))^{2/3} \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},-\frac {2}{3},\frac {3}{2},\frac {1}{2} (1-\sec (c+d x)),\frac {b (1-\sec (c+d x))}{a+b}\right )}{b d \sqrt {\sec (c+d x)+1} \left (\frac {a+b \sec (c+d x)}{a+b}\right )^{2/3}}\)

Input:

Int[(A + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^(1/3),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 155
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*Simplify[b/(b*c - a*d)]^n* 
Simplify[b/(b*e - a*f)]^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)/ 
(b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, 
 m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[Sim 
plify[b/(b*c - a*d)], 0] && GtQ[Simplify[b/(b*e - a*f)], 0] &&  !(GtQ[Simpl 
ify[d/(d*a - c*b)], 0] && GtQ[Simplify[d/(d*e - c*f)], 0] && SimplerQ[c + d 
*x, a + b*x]) &&  !(GtQ[Simplify[f/(f*a - e*b)], 0] && GtQ[Simplify[f/(f*c 
- e*d)], 0] && SimplerQ[e + f*x, a + b*x])
 

rule 156
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_)) 
^(p_), x_] :> Simp[(e + f*x)^FracPart[p]/(Simplify[b/(b*e - a*f)]^IntPart[p 
]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p])   Int[(a + b*x)^m*(c + d*x)^n*Si 
mp[b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)), x]^p, x], x] /; FreeQ[{a, b, c, 
 d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !IntegerQ[p] & 
& GtQ[Simplify[b/(b*c - a*d)], 0] &&  !GtQ[Simplify[b/(b*e - a*f)], 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4273
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Unintegrable[ 
(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0 
] &&  !IntegerQ[2*n]
 

rule 4321
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_ 
Symbol] :> Simp[Cot[e + f*x]/(f*Sqrt[1 + Csc[e + f*x]]*Sqrt[1 - Csc[e + f*x 
]])   Subst[Int[(a + b*x)^m/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Csc[e + f*x]] 
, x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*m]
 

rule 4412
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d 
_.) + (c_)), x_Symbol] :> Simp[c   Int[(a + b*Csc[e + f*x])^m, x], x] + Sim 
p[d   Int[(a + b*Csc[e + f*x])^m*Csc[e + f*x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[2*m]
 

rule 4551
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_), x_Symbol] :> Simp[1/b   Int[(a + b*Csc[e + f*x])^m*(A*b - a 
*C*Csc[e + f*x]), x], x] + Simp[C/b   Int[Csc[e + f*x]*(a + b*Csc[e + f*x]) 
^(m + 1), x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && 
  !IntegerQ[2*m]
 
Maple [N/A]

Not integrable

Time = 0.16 (sec) , antiderivative size = 25, normalized size of antiderivative = 0.93

\[\int \frac {A +C \sec \left (d x +c \right )^{2}}{\left (a +b \sec \left (d x +c \right )\right )^{\frac {1}{3}}}d x\]

Input:

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x)
 

Output:

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

Timed out
 

Sympy [N/A]

Not integrable

Time = 0.84 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.96 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt [3]{a + b \sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/3),x)
 

Output:

Integral((A + C*sec(c + d*x)**2)/(a + b*sec(c + d*x))**(1/3), x)
 

Maxima [N/A]

Not integrable

Time = 10.38 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c) + a)^(1/3), x)
 

Giac [N/A]

Not integrable

Time = 0.82 (sec) , antiderivative size = 27, normalized size of antiderivative = 1.00 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {1}{3}}} \,d x } \] Input:

integrate((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + A)/(b*sec(d*x + c) + a)^(1/3), x)
 

Mupad [N/A]

Not integrable

Time = 13.89 (sec) , antiderivative size = 29, normalized size of antiderivative = 1.07 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{1/3}} \,d x \] Input:

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/3),x)
 

Output:

int((A + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^(1/3), x)
 

Reduce [N/A]

Not integrable

Time = 0.17 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.56 \[ \int \frac {A+C \sec ^2(c+d x)}{\sqrt [3]{a+b \sec (c+d x)}} \, dx=\left (\int \frac {\sec \left (d x +c \right )^{2}}{\left (\sec \left (d x +c \right ) b +a \right )^{\frac {1}{3}}}d x \right ) c +\left (\int \frac {1}{\left (\sec \left (d x +c \right ) b +a \right )^{\frac {1}{3}}}d x \right ) a \] Input:

int((A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/3),x)
 

Output:

int(sec(c + d*x)**2/(sec(c + d*x)*b + a)**(1/3),x)*c + int(1/(sec(c + d*x) 
*b + a)**(1/3),x)*a