\(\int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [816]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 314 \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (5 a b B-2 a^2 C+9 b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {2 (a-b) \sqrt {a+b} (5 b B-2 a C-9 b C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^2 d}+\frac {2 (5 b B-2 a C) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b d}+\frac {2 C (a+b \sec (c+d x))^{3/2} \tan (c+d x)}{5 b d} \] Output:

-2/15*(a-b)*(a+b)^(1/2)*(5*B*a*b-2*C*a^2+9*C*b^2)*cot(d*x+c)*EllipticE((a+ 
b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+ 
b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-2/15*(a-b)*(a+b)^(1/2)*(5* 
B*b-2*C*a-9*C*b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),( 
(a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b 
))^(1/2)/b^2/d+2/15*(5*B*b-2*C*a)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d+2/ 
5*C*(a+b*sec(d*x+c))^(3/2)*tan(d*x+c)/b/d
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 14.15 (sec) , antiderivative size = 434, normalized size of antiderivative = 1.38 \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {a+b \sec (c+d x)} \left (2 (a+b) \left (-5 a b B+2 a^2 C-9 b^2 C\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+2 b (a+b) (5 b B-2 a C+9 b C) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+\left (-5 a b B+2 a^2 C-9 b^2 C\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{15 b^2 d (b+a \cos (c+d x)) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b \sec (c+d x)} \left (\frac {2 \left (5 a b B-2 a^2 C+9 b^2 C\right ) \sin (c+d x)}{15 b^2}+\frac {2 \sec (c+d x) (5 b B \sin (c+d x)+a C \sin (c+d x))}{15 b}+\frac {2}{5} C \sec (c+d x) \tan (c+d x)\right )}{d} \] Input:

Integrate[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c 
+ d*x]^2),x]
 

Output:

(2*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]*(2*(a + 
b)*(-5*a*b*B + 2*a^2*C - 9*b^2*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sq 
rt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan 
[(c + d*x)/2]], (a - b)/(a + b)] + 2*b*(a + b)*(5*b*B - 2*a*C + 9*b*C)*Sqr 
t[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + 
 Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (- 
5*a*b*B + 2*a^2*C - 9*b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d* 
x)/2]^2*Tan[(c + d*x)/2]))/(15*b^2*d*(b + a*Cos[c + d*x])*Sqrt[Sec[(c + d* 
x)/2]^2]*Sqrt[Sec[c + d*x]]) + (Sqrt[a + b*Sec[c + d*x]]*((2*(5*a*b*B - 2* 
a^2*C + 9*b^2*C)*Sin[c + d*x])/(15*b^2) + (2*Sec[c + d*x]*(5*b*B*Sin[c + d 
*x] + a*C*Sin[c + d*x]))/(15*b) + (2*C*Sec[c + d*x]*Tan[c + d*x])/5))/d
 

Rubi [A] (verified)

Time = 1.27 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.02, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.325, Rules used = {3042, 4560, 3042, 4498, 27, 3042, 4490, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4560

\(\displaystyle \int \sec ^2(c+d x) \sqrt {a+b \sec (c+d x)} (B+C \sec (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (B+C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {2 \int \frac {1}{2} \sec (c+d x) \sqrt {a+b \sec (c+d x)} (3 b C+(5 b B-2 a C) \sec (c+d x))dx}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sec (c+d x) \sqrt {a+b \sec (c+d x)} (3 b C+(5 b B-2 a C) \sec (c+d x))dx}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (3 b C+(5 b B-2 a C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4490

\(\displaystyle \frac {\frac {2}{3} \int \frac {\sec (c+d x) \left (b (5 b B+7 a C)+\left (-2 C a^2+5 b B a+9 b^2 C\right ) \sec (c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx+\frac {2 (5 b B-2 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \int \frac {\sec (c+d x) \left (b (5 b B+7 a C)+\left (-2 C a^2+5 b B a+9 b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx+\frac {2 (5 b B-2 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (b (5 b B+7 a C)+\left (-2 C a^2+5 b B a+9 b^2 C\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (5 b B-2 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {\frac {1}{3} \left (\left (-2 a^2 C+5 a b B+9 b^2 C\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-(a-b) (-2 a C+5 b B-9 b C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )+\frac {2 (5 b B-2 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{3} \left (\left (-2 a^2 C+5 a b B+9 b^2 C\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) (-2 a C+5 b B-9 b C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 (5 b B-2 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {\frac {1}{3} \left (\left (-2 a^2 C+5 a b B+9 b^2 C\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} (-2 a C+5 b B-9 b C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )+\frac {2 (5 b B-2 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {\frac {1}{3} \left (-\frac {2 (a-b) \sqrt {a+b} \left (-2 a^2 C+5 a b B+9 b^2 C\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 (a-b) \sqrt {a+b} (-2 a C+5 b B-9 b C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}\right )+\frac {2 (5 b B-2 a C) \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}}{5 b}+\frac {2 C \tan (c+d x) (a+b \sec (c+d x))^{3/2}}{5 b d}\)

Input:

Int[Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*(B*Sec[c + d*x] + C*Sec[c + d*x] 
^2),x]
 

Output:

(2*C*(a + b*Sec[c + d*x])^(3/2)*Tan[c + d*x])/(5*b*d) + (((-2*(a - b)*Sqrt 
[a + b]*(5*a*b*B - 2*a^2*C + 9*b^2*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a 
 + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x 
]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*(a - b) 
*Sqrt[a + b]*(5*b*B - 2*a*C - 9*b*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a 
+ b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x] 
))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))/3 + (2*(5*b*B 
- 2*a*C)*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d))/(5*b)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4490
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1)   Int[Csc[e + f*x]* 
(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1 
))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a* 
B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4560
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_. 
)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.) 
*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[1/b^2   Int[(a + b*Csc[e + f*x])^(m 
+ 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1342\) vs. \(2(284)=568\).

Time = 35.84 (sec) , antiderivative size = 1343, normalized size of antiderivative = 4.28

method result size
default \(\text {Expression too large to display}\) \(1343\)
parts \(\text {Expression too large to display}\) \(1355\)

Input:

int(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x,meth 
od=_RETURNVERBOSE)
 

Output:

-2/15/d/b^2*(a+b*sec(d*x+c))^(1/2)/(cos(d*x+c)^2*a+a*cos(d*x+c)+b*cos(d*x+ 
c)+b)*(5*(-cos(d*x+c)^2-2*cos(d*x+c)-1)*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d 
*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b*EllipticE(-csc(d*x 
+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+5*(-cos(d*x+c)^2-2*cos(d*x+c)-1)*B*(1/ 
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*a*b^2*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+2*(cos(d* 
x+c)^2+2*cos(d*x+c)+1)*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*c 
os(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*EllipticE(-csc(d*x+c)+cot(d*x+c),((a- 
b)/(a+b))^(1/2))+2*(cos(d*x+c)^2+2*cos(d*x+c)+1)*C*(cos(d*x+c)/(cos(d*x+c) 
+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*EllipticE 
(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+9*(-cos(d*x+c)^2-2*cos(d*x+c) 
-1)*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x 
+c)+1))^(1/2)*a*b^2*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+ 
9*(-cos(d*x+c)^2-2*cos(d*x+c)-1)*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a 
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b^3*EllipticE(-csc(d*x+c)+cot(d 
*x+c),((a-b)/(a+b))^(1/2))+5*(cos(d*x+c)^2+2*cos(d*x+c)+1)*B*(1/(a+b)*(b+a 
*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2 
*EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+5*(cos(d*x+c)^2+2*c 
os(d*x+c)+1)*B*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c) 
/(cos(d*x+c)+1))^(1/2)*b^3*EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b...
 

Fricas [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \] Input:

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2), 
x, algorithm="fricas")
 

Output:

integral((C*sec(d*x + c)^3 + B*sec(d*x + c)^2)*sqrt(b*sec(d*x + c) + a), x 
)
 

Sympy [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (B + C \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx \] Input:

integrate(sec(d*x+c)*(a+b*sec(d*x+c))**(1/2)*(B*sec(d*x+c)+C*sec(d*x+c)**2 
),x)
 

Output:

Integral((B + C*sec(c + d*x))*sqrt(a + b*sec(c + d*x))*sec(c + d*x)**2, x)
 

Maxima [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \] Input:

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2), 
x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sec 
(d*x + c), x)
 

Giac [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sqrt {b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right ) \,d x } \] Input:

integrate(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2), 
x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sec 
(d*x + c), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \frac {\left (\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{\cos \left (c+d\,x\right )} \,d x \] Input:

int(((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c 
 + d*x),x)
 

Output:

int(((B/cos(c + d*x) + C/cos(c + d*x)^2)*(a + b/cos(c + d*x))^(1/2))/cos(c 
 + d*x), x)
 

Reduce [F]

\[ \int \sec (c+d x) \sqrt {a+b \sec (c+d x)} \left (B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\left (\int \sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}d x \right ) b \] Input:

int(sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*(B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

int(sqrt(sec(c + d*x)*b + a)*sec(c + d*x)**3,x)*c + int(sqrt(sec(c + d*x)* 
b + a)*sec(c + d*x)**2,x)*b