\(\int \frac {\sec (c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [839]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 40, antiderivative size = 261 \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} (3 b B-2 a C) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^3 d}-\frac {2 \sqrt {a+b} (3 b B-2 a C-b C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}+\frac {2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 b d} \] Output:

-2/3*(a-b)*(a+b)^(1/2)*(3*B*b-2*C*a)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c)) 
^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b 
*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d-2/3*(a+b)^(1/2)*(3*B*b-2*C*a-C*b)*cot(d 
*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b 
*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2/3*C*( 
a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d
 

Mathematica [A] (warning: unable to verify)

Time = 12.41 (sec) , antiderivative size = 335, normalized size of antiderivative = 1.28 \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {\sec (c+d x)} \left ((b+a \cos (c+d x)) (b C+(3 b B-2 a C) \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+\frac {\sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \left (2 (a+b) (-3 b B+2 a C) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {a+b \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}+2 b (-2 a C+b (3 B+C)) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {\frac {a+b \sec (c+d x)}{(a+b) (1+\sec (c+d x))}}-(3 b B-2 a C) \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}\right )}{3 b^2 d \sqrt {a+b \sec (c+d x)}} \] Input:

Integrate[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Se 
c[c + d*x]],x]
 

Output:

(2*Sqrt[Sec[c + d*x]]*((b + a*Cos[c + d*x])*(b*C + (3*b*B - 2*a*C)*Cos[c + 
 d*x])*Sec[c + d*x]^(3/2)*Sin[c + d*x] + (Sqrt[Cos[(c + d*x)/2]^2*Sec[c + 
d*x]]*(2*(a + b)*(-3*b*B + 2*a*C)*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - 
 b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b*Sec[c + d*x])/((a + 
 b)*(1 + Sec[c + d*x]))] + 2*b*(-2*a*C + b*(3*B + C))*EllipticF[ArcSin[Tan 
[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[(a + b 
*Sec[c + d*x])/((a + b)*(1 + Sec[c + d*x]))] - (3*b*B - 2*a*C)*Cos[c + d*x 
]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/Sqrt[Sec[(c + 
 d*x)/2]^2]))/(3*b^2*d*Sqrt[a + b*Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.02, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 4560, 3042, 4498, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4560

\(\displaystyle \int \frac {\sec ^2(c+d x) (B+C \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (B+C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {2 \int \frac {\sec (c+d x) (b C+(3 b B-2 a C) \sec (c+d x))}{2 \sqrt {a+b \sec (c+d x)}}dx}{3 b}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec (c+d x) (b C+(3 b B-2 a C) \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (b C+(3 b B-2 a C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {(3 b B-2 a C) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-(b (3 B-C)-2 a C) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(3 b B-2 a C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(b (3 B-C)-2 a C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {(3 b B-2 a C) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (b (3 B-C)-2 a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{3 b}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {-\frac {2 (a-b) \sqrt {a+b} (3 b B-2 a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} (b (3 B-C)-2 a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{3 b}+\frac {2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}\)

Input:

Int[(Sec[c + d*x]*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + 
d*x]],x]
 

Output:

((-2*(a - b)*Sqrt[a + b]*(3*b*B - 2*a*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqr 
t[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + 
d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt 
[a + b]*(b*(3*B - C) - 2*a*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec 
[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + 
 b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d))/(3*b) + (2*C*Sqrt[a + 
 b*Sec[c + d*x]]*Tan[c + d*x])/(3*b*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4560
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_. 
)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.) 
*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[1/b^2   Int[(a + b*Csc[e + f*x])^(m 
+ 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(838\) vs. \(2(235)=470\).

Time = 45.56 (sec) , antiderivative size = 839, normalized size of antiderivative = 3.21

method result size
default \(\text {Expression too large to display}\) \(839\)
parts \(\text {Expression too large to display}\) \(871\)

Input:

int(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,meth 
od=_RETURNVERBOSE)
 

Output:

2/3/d/b^2*(a+b*sec(d*x+c))^(1/2)/(cos(d*x+c)^2*a+a*cos(d*x+c)+b*cos(d*x+c) 
+b)*((3*cos(d*x+c)^2+6*cos(d*x+c)+3)*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*( 
1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*EllipticE(-csc(d*x+c)+c 
ot(d*x+c),((a-b)/(a+b))^(1/2))+(3*cos(d*x+c)^2+6*cos(d*x+c)+3)*B*(cos(d*x+ 
c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*b 
^2*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(-2*cos(d*x+c)^2- 
4*cos(d*x+c)-2)*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+ 
c))/(cos(d*x+c)+1))^(1/2)*a^2*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b 
))^(1/2))+(-2*cos(d*x+c)^2-4*cos(d*x+c)-2)*C*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*EllipticE(-csc(d* 
x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(-3*cos(d*x+c)^2-6*cos(d*x+c)-3)*B*(c 
os(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^ 
(1/2)*b^2*EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(2*cos(d*x 
+c)^2+4*cos(d*x+c)+2)*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*co 
s(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b*EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b 
)/(a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d*x+c)-1)*C*(1/(a+b)*(b+a*cos(d*x+c)) 
/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*b^2*EllipticF(-cs 
c(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+3*B*a*b*cos(d*x+c)*sin(d*x+c)+3*B 
*b^2*sin(d*x+c)-2*C*a^2*cos(d*x+c)*sin(d*x+c)+sin(d*x+c)*(cos(d*x+c)-1)*C* 
a*b+C*b^2*(sin(d*x+c)+tan(d*x+c)))
 

Fricas [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2), 
x, algorithm="fricas")
 

Output:

integral((C*sec(d*x + c)^3 + B*sec(d*x + c)^2)/sqrt(b*sec(d*x + c) + a), x 
)
 

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (B + C \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \] Input:

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2 
),x)
 

Output:

Integral((B + C*sec(c + d*x))*sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2), 
x, algorithm="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)/sqrt(b*sec(d*x 
+ c) + a), x)
 

Giac [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2), 
x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)/sqrt(b*sec(d*x 
+ c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x)) 
^(1/2)),x)
 

Output:

int((B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d*x)) 
^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\sec (c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{3}}{\sec \left (d x +c \right ) b +a}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right ) b +a}d x \right ) b \] Input:

int(sec(d*x+c)*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x)*b + a)*sec(c + d*x)**3)/(sec(c + d*x)*b + a),x)*c + 
 int((sqrt(sec(c + d*x)*b + a)*sec(c + d*x)**2)/(sec(c + d*x)*b + a),x)*b