\(\int \frac {\sec (c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [966]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 41, antiderivative size = 293 \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {2 \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^3 \sqrt {a+b} d}+\frac {2 (A b+b (B-C)-2 a C) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt {a+b} d}-\frac {2 \left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \] Output:

-2*(A*b^2-B*a*b+2*C*a^2-C*b^2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2) 
/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+se 
c(d*x+c))/(a-b))^(1/2)/b^3/(a+b)^(1/2)/d+2*(A*b+b*(B-C)-2*C*a)*cot(d*x+c)* 
EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-se 
c(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/(a+b)^(1/2)/d-2 
*(A*b^2-a*(B*b-C*a))*tan(d*x+c)/b/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(603\) vs. \(2(293)=586\).

Time = 19.00 (sec) , antiderivative size = 603, normalized size of antiderivative = 2.06 \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {(b+a \cos (c+d x))^2 \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {4 \left (A b^2-a b B+2 a^2 C-b^2 C\right ) \sin (c+d x)}{b^2 \left (-a^2+b^2\right )}+\frac {4 \left (A b^2 \sin (c+d x)-a b B \sin (c+d x)+a^2 C \sin (c+d x)\right )}{b \left (-a^2+b^2\right ) (b+a \cos (c+d x))}\right )}{d (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) (a+b \sec (c+d x))^{3/2}}+\frac {4 \sqrt {2} \sqrt {\frac {\cos (c+d x)}{(1+\cos (c+d x))^2}} (b+a \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left ((a+b) \left (\left (A b^2-a b B+2 a^2 C-b^2 C\right ) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )+b (-A b-2 a C+b (B+C)) \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )\right ) \left (\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}} \sec (c+d x)+\left (A b^2-a b B+2 a^2 C-b^2 C\right ) \cos (c+d x) (b+a \cos (c+d x)) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{b^2 \left (-a^2+b^2\right ) d \sqrt {\frac {1}{1+\cos (c+d x)}} (A+2 C+2 B \cos (c+d x)+A \cos (2 c+2 d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )^{3/2} \sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \] Input:

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Se 
c[c + d*x])^(3/2),x]
 

Output:

((b + a*Cos[c + d*x])^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((-4*(A*b^ 
2 - a*b*B + 2*a^2*C - b^2*C)*Sin[c + d*x])/(b^2*(-a^2 + b^2)) + (4*(A*b^2* 
Sin[c + d*x] - a*b*B*Sin[c + d*x] + a^2*C*Sin[c + d*x]))/(b*(-a^2 + b^2)*( 
b + a*Cos[c + d*x]))))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x] 
)*(a + b*Sec[c + d*x])^(3/2)) + (4*Sqrt[2]*Sqrt[Cos[c + d*x]/(1 + Cos[c + 
d*x])^2]*(b + a*Cos[c + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*(Cos[( 
c + d*x)/2]^2*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)* 
((a + b)*((A*b^2 - a*b*B + 2*a^2*C - b^2*C)*EllipticE[ArcSin[Tan[(c + d*x) 
/2]], (a - b)/(a + b)] + b*(-(A*b) - 2*a*C + b*(B + C))*EllipticF[ArcSin[T 
an[(c + d*x)/2]], (a - b)/(a + b)])*(Cos[c + d*x]*Sec[(c + d*x)/2]^2)^(3/2 
)*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)]*Sec[c + d*x] + ( 
A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c 
+ d*x)/2]^4*Tan[(c + d*x)/2]))/(b^2*(-a^2 + b^2)*d*Sqrt[(1 + Cos[c + d*x]) 
^(-1)]*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*c + 2*d*x])*(Sec[(c + d*x)/2] 
^2)^(3/2)*Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(3/2))
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.09, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.195, Rules used = {3042, 4568, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4568

\(\displaystyle -\frac {2 \int \frac {\sec (c+d x) \left (b (b B-a (A+C))-\left (2 C a^2-b B a+A b^2-b^2 C\right ) \sec (c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{b \left (a^2-b^2\right )}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sec (c+d x) \left (b (b B-a (A+C))-\left (2 C a^2-b B a+A b^2-b^2 C\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx}{b \left (a^2-b^2\right )}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (b (b B-a (A+C))+\left (-2 C a^2+b B a-A b^2+b^2 C\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{b \left (a^2-b^2\right )}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4493

\(\displaystyle -\frac {-\left (2 a^2 C-a b B+A b^2-b^2 C\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-\left ((a-b) (-2 a C+A b+b (B-C)) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )}{b \left (a^2-b^2\right )}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\left (2 a^2 C-a b B+A b^2-b^2 C\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\left ((a-b) (-2 a C+A b+b (B-C)) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )}{b \left (a^2-b^2\right )}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4319

\(\displaystyle -\frac {-\left (2 a^2 C-a b B+A b^2-b^2 C\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) (-2 a C+A b+b (B-C)) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{b \left (a^2-b^2\right )}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4492

\(\displaystyle -\frac {\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \left (2 a^2 C-a b B+A b^2-b^2 C\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) (-2 a C+A b+b (B-C)) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{b \left (a^2-b^2\right )}-\frac {2 \tan (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

Input:

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + 
d*x])^(3/2),x]
 

Output:

-(((2*(a - b)*Sqrt[a + b]*(A*b^2 - a*b*B + 2*a^2*C - b^2*C)*Cot[c + d*x]*E 
llipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sq 
rt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))] 
)/(b^2*d) - (2*(a - b)*Sqrt[a + b]*(A*b + b*(B - C) - 2*a*C)*Cot[c + d*x]* 
EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*S 
qrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b)) 
])/(b*d))/(b*(a^2 - b^2))) - (2*(A*b^2 - a*(b*B - a*C))*Tan[c + d*x])/(b*( 
a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4568
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e 
_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_S 
ymbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cot[e + f*x]*((a + b*Csc[e + f*x] 
)^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2)) 
 Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m 
+ 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Csc[e + f*x], 
x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^ 
2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1650\) vs. \(2(273)=546\).

Time = 29.81 (sec) , antiderivative size = 1651, normalized size of antiderivative = 5.63

method result size
default \(\text {Expression too large to display}\) \(1651\)
parts \(\text {Expression too large to display}\) \(1780\)

Input:

int(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x,me 
thod=_RETURNVERBOSE)
 

Output:

-2/d/b^2/(a+b)/(a-b)*(((1-cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x+c) 
)*b*a^2*B+((1-cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x+c))*b^2*a*C+(- 
(1-cos(d*x+c))^3*csc(d*x+c)^3+csc(d*x+c)-cot(d*x+c))*b^2*a*A+(-(1-cos(d*x+ 
c))^3*csc(d*x+c)^3+csc(d*x+c)-cot(d*x+c))*b^2*a*B+2*C*a^2*b*(1-cos(d*x+c)) 
^3*csc(d*x+c)^3+((1-cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x+c))*b^3* 
A+(-2*(1-cos(d*x+c))^3*csc(d*x+c)^3+2*csc(d*x+c)-2*cot(d*x+c))*a^3*C+(-(1- 
cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d*x+c))*b^3*C-2*A*(cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipt 
icF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*A*(cos(d*x+c)/(cos 
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elliptic 
E(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+2*B*(cos(d*x+c)/(cos(d 
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF( 
-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-2*B*(cos(d*x+c)/(cos(d*x 
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(-c 
sc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*B*(cos(d*x+c)/(cos(d*x+c 
)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(-csc 
(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-4*C*(cos(d*x+c)/(cos(d*x+c)+ 
1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(-csc(d 
*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-2*C*(cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(-csc(...
 

Fricas [F]

\[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2 
),x, algorithm="fricas")
 

Output:

integral((C*sec(d*x + c)^3 + B*sec(d*x + c)^2 + A*sec(d*x + c))*sqrt(b*sec 
(d*x + c) + a)/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)
 

Sympy [F]

\[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(3 
/2),x)
 

Output:

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)/(a + b*sec( 
c + d*x))**(3/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2 
),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2 
),x, algorithm="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sec(d*x + c)/(b*sec(d*x 
+ c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\cos \left (c+d\,x\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d 
*x))^(3/2)),x)
 

Output:

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)*(a + b/cos(c + d 
*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{3}}{\sec \left (d x +c \right )^{2} b^{2}+2 \sec \left (d x +c \right ) a b +a^{2}}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2} b^{2}+2 \sec \left (d x +c \right ) a b +a^{2}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )^{2} b^{2}+2 \sec \left (d x +c \right ) a b +a^{2}}d x \right ) a \] Input:

int(sec(d*x+c)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x)*b + a)*sec(c + d*x)**3)/(sec(c + d*x)**2*b**2 + 2*s 
ec(c + d*x)*a*b + a**2),x)*c + int((sqrt(sec(c + d*x)*b + a)*sec(c + d*x)* 
*2)/(sec(c + d*x)**2*b**2 + 2*sec(c + d*x)*a*b + a**2),x)*b + int((sqrt(se 
c(c + d*x)*b + a)*sec(c + d*x))/(sec(c + d*x)**2*b**2 + 2*sec(c + d*x)*a*b 
 + a**2),x)*a