\(\int (a+b \sec ^2(e+f x))^{3/2} \sin ^2(e+f x) \, dx\) [88]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 161 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\frac {\sqrt {a} (a-3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {(3 a-b) \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f}-\frac {\cos (e+f x) \sin (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{2 f} \] Output:

1/2*a^(1/2)*(a-3*b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/ 
f+1/2*(3*a-b)*b^(1/2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2 
))/f+b*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f-1/2*cos(f*x+e)*sin(f*x+e)*( 
a+b+b*tan(f*x+e)^2)^(3/2)/f
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 3.44 (sec) , antiderivative size = 493, normalized size of antiderivative = 3.06 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\frac {e^{-i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos ^3(e+f x) \left (\frac {i \left (-1+e^{2 i (e+f x)}\right ) \left (-4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2\right )}{\left (1+e^{2 i (e+f x)}\right )^2}+\frac {2 e^{2 i (e+f x)} \left (2 \sqrt {a} (a-3 b) f x-i \sqrt {a} (a-3 b) \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+i \sqrt {a} (a-3 b) \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+2 \sqrt {b} (-3 a+b) \log \left (\frac {\left (\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{b (-3 a+b) \left (1+e^{2 i (e+f x)}\right )}\right )\right )}{\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{2 \sqrt {2} f (a+2 b+a \cos (2 e+2 f x))^{3/2}} \] Input:

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Sin[e + f*x]^2,x]
 

Output:

(Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f 
*x]^3*((I*(-1 + E^((2*I)*(e + f*x)))*(-4*b*E^((2*I)*(e + f*x)) + a*(1 + E^ 
((2*I)*(e + f*x)))^2))/(1 + E^((2*I)*(e + f*x)))^2 + (2*E^((2*I)*(e + f*x) 
)*(2*Sqrt[a]*(a - 3*b)*f*x - I*Sqrt[a]*(a - 3*b)*Log[a + 2*b + a*E^((2*I)* 
(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f 
*x)))^2]] + I*Sqrt[a]*(a - 3*b)*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2* 
I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e 
+ f*x)))^2]] + 2*Sqrt[b]*(-3*a + b)*Log[((Sqrt[b]*(-1 + E^((2*I)*(e + f*x) 
)) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*f)/( 
b*(-3*a + b)*(1 + E^((2*I)*(e + f*x))))]))/Sqrt[4*b*E^((2*I)*(e + f*x)) + 
a*(1 + E^((2*I)*(e + f*x)))^2])*(a + b*Sec[e + f*x]^2)^(3/2))/(2*Sqrt[2]*E 
^(I*(e + f*x))*f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.99, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4620, 369, 403, 27, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (e+f x)^2 \left (a+b \sec (e+f x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}{\left (\tan ^2(e+f x)+1\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\frac {1}{2} \int \frac {\sqrt {b \tan ^2(e+f x)+a+b} \left (4 b \tan ^2(e+f x)+a+b\right )}{\tan ^2(e+f x)+1}d\tan (e+f x)-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 403

\(\displaystyle \frac {\frac {1}{2} \left (\frac {1}{2} \int \frac {2 \left (a^2-b^2+(3 a-b) b \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{2} \left (\int \frac {a^2-b^2+(3 a-b) b \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{2} \left (b (3 a-b) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+a (a-3 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{2} \left (a (a-3 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+b (3 a-b) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left (a (a-3 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\sqrt {b} (3 a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{2} \left (a (a-3 b) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+\sqrt {b} (3 a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} \left (\sqrt {a} (a-3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+\sqrt {b} (3 a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+2 b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

Input:

Int[(a + b*Sec[e + f*x]^2)^(3/2)*Sin[e + f*x]^2,x]
 

Output:

(-1/2*(Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/(1 + Tan[e + f*x]^2) 
 + (Sqrt[a]*(a - 3*b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + 
 f*x]^2]] + (3*a - b)*Sqrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + 
b*Tan[e + f*x]^2]] + 2*b*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/2)/f
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 403
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[f*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b*(2*(p + 
 q + 1) + 1))), x] + Simp[1/(b*(2*(p + q + 1) + 1))   Int[(a + b*x^2)^p*(c 
+ d*x^2)^(q - 1)*Simp[c*(b*e - a*f + b*e*2*(p + q + 1)) + (d*(b*e - a*f) + 
f*2*q*(b*c - a*d) + b*d*e*2*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, p}, x] && GtQ[q, 0] && NeQ[2*(p + q + 1) + 1, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(824\) vs. \(2(139)=278\).

Time = 23.53 (sec) , antiderivative size = 825, normalized size of antiderivative = 5.12

method result size
default \(\text {Expression too large to display}\) \(825\)

Input:

int((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-1/4/f/b/(-a)^(1/2)*(a+b*sec(f*x+e)^2)^(3/2)/((b+a*cos(f*x+e)^2)/(1+cos(f* 
x+e))^2)^(1/2)/(a*cos(f*x+e)^3+a*cos(f*x+e)^2+cos(f*x+e)*b+b)*(ln(4*(b^(1/ 
2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*co 
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*b^(5 
/2)*(-a)^(1/2)*cos(f*x+e)^3-3*ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/ 
2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*b^(3/2)*(-a)^(1/2)*a*cos(f*x+e)^3+ln( 
-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2) 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e) 
-1))*b^(5/2)*(-a)^(1/2)*cos(f*x+e)^3-3*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/ 
(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+ 
e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*b^(3/2)*(-a)^(1/2)*a*cos(f* 
x+e)^3-2*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f 
*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e 
)*a)*a^2*b*cos(f*x+e)^3+6*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e 
))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^ 
(1/2)-4*sin(f*x+e)*a)*a*b^2*cos(f*x+e)^3+sin(f*x+e)*cos(f*x+e)^3*(2*cos(f* 
x+e)+2)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+(-2*cos 
(f*x+e)-2)*sin(f*x+e)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/ 
2)*b^2*cos(f*x+e))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 308 vs. \(2 (139) = 278\).

Time = 0.94 (sec) , antiderivative size = 1535, normalized size of antiderivative = 9.53 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\text {Too large to display} \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x, algorithm="fricas")
 

Output:

[-1/16*(sqrt(-a)*(a - 3*b)*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*( 
a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + 
e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 
7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a 
^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^ 
3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 
 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 2*(3*a - b)*sqrt(b)*cos(f*x + e)*log 
(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 - 4*(( 
a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + 
 b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 8*(a*cos(f*x + 
 e)^2 - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(f*co 
s(f*x + e)), 1/16*(4*(3*a - b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^ 
3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2) 
/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) - sqrt(-a)*(a - 3 
*b)*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + 
e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 
 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos( 
f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 
2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - 
 b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2...
 

Sympy [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\text {Timed out} \] Input:

integrate((a+b*sec(f*x+e)**2)**(3/2)*sin(f*x+e)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sin \left (f x + e\right )^{2} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*sin(f*x + e)^2, x)
 

Giac [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sin \left (f x + e\right )^{2} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*sin(f*x + e)^2, x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\int {\sin \left (e+f\,x\right )}^2\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \] Input:

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \sin ^2(e+f x) \, dx=\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )^{2} \sin \left (f x +e \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sin \left (f x +e \right )^{2}d x \right ) a \] Input:

int((a+b*sec(f*x+e)^2)^(3/2)*sin(f*x+e)^2,x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*sec(e + f*x)**2*sin(e + f*x)**2,x)*b + int 
(sqrt(sec(e + f*x)**2*b + a)*sin(e + f*x)**2,x)*a