\(\int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [101]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 85 \[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {(a+b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 a^{3/2} f}-\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 a f} \] Output:

1/2*(a+b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(3/2)/f- 
1/2*cos(f*x+e)*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/a/f
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.47 \[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\sqrt {a+2 b+a \cos (2 (e+f x))} \sec (e+f x) \left ((a+b) \arctan \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )-\sqrt {a} \sin (e+f x) \sqrt {a+b-a \sin ^2(e+f x)}\right )}{2 \sqrt {2} a^{3/2} f \sqrt {a+b \sec ^2(e+f x)}} \] Input:

Integrate[Sin[e + f*x]^2/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*Sec[e + f*x]*((a + b)*ArcTan[(Sqrt[a]* 
Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]] - Sqrt[a]*Sin[e + f*x]*Sqrt[ 
a + b - a*Sin[e + f*x]^2]))/(2*Sqrt[2]*a^(3/2)*f*Sqrt[a + b*Sec[e + f*x]^2 
])
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.05, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3042, 4620, 373, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^2}{\sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right )^2 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\int \frac {a+b}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {(a+b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {(a+b) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{2 a}-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {(a+b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 a^{3/2}}-\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}}{f}\)

Input:

Int[Sin[e + f*x]^2/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(((a + b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/( 
2*a^(3/2)) - (Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*a*(1 + Tan[e 
 + f*x]^2)))/f
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(296\) vs. \(2(73)=146\).

Time = 5.86 (sec) , antiderivative size = 297, normalized size of antiderivative = 3.49

method result size
default \(-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (-1-\sec \left (f x +e \right )\right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (-1-\sec \left (f x +e \right )\right )+\sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {-a}\, a +\sqrt {-a}\, b \tan \left (f x +e \right )}{2 f a \sqrt {-a}\, \sqrt {a +b \sec \left (f x +e \right )^{2}}}\) \(297\)

Input:

int(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2/f/a/(-a)^(1/2)/(a+b*sec(f*x+e)^2)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f 
*x+e))^2)^(1/2)*a*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4* 
sin(f*x+e)*a)*(-1-sec(f*x+e))+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)* 
b*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4 
*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*(- 
1-sec(f*x+e))+sin(f*x+e)*cos(f*x+e)*(-a)^(1/2)*a+(-a)^(1/2)*b*tan(f*x+e))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 188 vs. \(2 (73) = 146\).

Time = 0.23 (sec) , antiderivative size = 497, normalized size of antiderivative = 5.85 \[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\left [-\frac {8 \, a \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + \sqrt {-a} {\left (a + b\right )} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right )}{16 \, a^{2} f}, -\frac {4 \, a \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a + b\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right )}{8 \, a^{2} f}\right ] \] Input:

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[-1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f 
*x + e) + sqrt(-a)*(a + b)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)* 
cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 
28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a 
*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x 
 + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 
 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x 
 + e)^2)*sin(f*x + e)))/(a^2*f), -1/8*(4*a*sqrt((a*cos(f*x + e)^2 + b)/cos 
(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + (a + b)*sqrt(a)*arctan(1/4*(8*a^2 
*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f 
*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f 
*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) 
)/(a^2*f)]
 

Sympy [F]

\[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sin ^{2}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \] Input:

integrate(sin(f*x+e)**2/(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(sin(e + f*x)**2/sqrt(a + b*sec(e + f*x)**2), x)
 

Maxima [F]

\[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sin(f*x + e)^2/sqrt(b*sec(f*x + e)^2 + a), x)
 

Giac [F]

\[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\sin \left (f x + e\right )^{2}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(sin(f*x + e)^2/sqrt(b*sec(f*x + e)^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^2}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \] Input:

int(sin(e + f*x)^2/(a + b/cos(e + f*x)^2)^(1/2),x)
 

Output:

int(sin(e + f*x)^2/(a + b/cos(e + f*x)^2)^(1/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {\sin ^2(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sin \left (f x +e \right )^{2}}{\sec \left (f x +e \right )^{2} b +a}d x \] Input:

int(sin(f*x+e)^2/(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*sin(e + f*x)**2)/(sec(e + f*x)**2*b + a), 
x)