\(\int (a+b \sec ^2(e+f x))^p \sin ^2(e+f x) \, dx\) [139]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 90 \[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\frac {\operatorname {AppellF1}\left (\frac {3}{2},2,-p,\frac {5}{2},-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a+b}\right ) \tan ^3(e+f x) \left (a+b+b \tan ^2(e+f x)\right )^p \left (\frac {a+b+b \tan ^2(e+f x)}{a+b}\right )^{-p}}{3 f} \] Output:

1/3*AppellF1(3/2,2,-p,5/2,-tan(f*x+e)^2,-b*tan(f*x+e)^2/(a+b))*tan(f*x+e)^ 
3*(a+b+b*tan(f*x+e)^2)^p/f/(((a+b+b*tan(f*x+e)^2)/(a+b))^p)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(3781\) vs. \(2(90)=180\).

Time = 19.79 (sec) , antiderivative size = 3781, normalized size of antiderivative = 42.01 \[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\text {Result too large to show} \] Input:

Integrate[(a + b*Sec[e + f*x]^2)^p*Sin[e + f*x]^2,x]
 

Output:

(3*(a + b)*(a + 2*b + a*Cos[2*(e + f*x)])^p*(Sec[e + f*x]^2)^(-2 + p)*(a + 
 b*Sec[e + f*x]^2)^p*Sin[e + f*x]^2*Tan[e + f*x]*(AppellF1[1/2, 2, -p, 3/2 
, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))]/(-3*(a + b)*AppellF1[1/2 
, 2, -p, 3/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))] + 2*(-(b*p*A 
ppellF1[3/2, 2, 1 - p, 5/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b)) 
]) + 2*(a + b)*AppellF1[3/2, 3, -p, 5/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x 
]^2)/(a + b))])*Tan[e + f*x]^2) + (AppellF1[1/2, -p, 1, 3/2, -((b*Tan[e + 
f*x]^2)/(a + b)), -Tan[e + f*x]^2]*Sec[e + f*x]^2)/(3*(a + b)*AppellF1[1/2 
, -p, 1, 3/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2] + 2*(b*p*App 
ellF1[3/2, 1 - p, 1, 5/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2] 
- (a + b)*AppellF1[3/2, -p, 2, 5/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e 
+ f*x]^2])*Tan[e + f*x]^2)))/(f*(3*(a + b)*(a + 2*b + a*Cos[2*(e + f*x)])^ 
p*(Sec[e + f*x]^2)^(-1 + p)*(AppellF1[1/2, 2, -p, 3/2, -Tan[e + f*x]^2, -( 
(b*Tan[e + f*x]^2)/(a + b))]/(-3*(a + b)*AppellF1[1/2, 2, -p, 3/2, -Tan[e 
+ f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))] + 2*(-(b*p*AppellF1[3/2, 2, 1 - p 
, 5/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))]) + 2*(a + b)*Appell 
F1[3/2, 3, -p, 5/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))])*Tan[e 
 + f*x]^2) + (AppellF1[1/2, -p, 1, 3/2, -((b*Tan[e + f*x]^2)/(a + b)), -Ta 
n[e + f*x]^2]*Sec[e + f*x]^2)/(3*(a + b)*AppellF1[1/2, -p, 1, 3/2, -((b*Ta 
n[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2] + 2*(b*p*AppellF1[3/2, 1 - p, ...
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4620, 395, 394}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (e+f x)^2 \left (a+b \sec (e+f x)^2\right )^pdx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x) \left (b \tan ^2(e+f x)+a+b\right )^p}{\left (\tan ^2(e+f x)+1\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 395

\(\displaystyle \frac {\left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \int \frac {\tan ^2(e+f x) \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^p}{\left (\tan ^2(e+f x)+1\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 394

\(\displaystyle \frac {\tan ^3(e+f x) \left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {3}{2},2,-p,\frac {5}{2},-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a+b}\right )}{3 f}\)

Input:

Int[(a + b*Sec[e + f*x]^2)^p*Sin[e + f*x]^2,x]
 

Output:

(AppellF1[3/2, 2, -p, 5/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))] 
*Tan[e + f*x]^3*(a + b + b*Tan[e + f*x]^2)^p)/(3*f*(1 + (b*Tan[e + f*x]^2) 
/(a + b))^p)
 

Defintions of rubi rules used

rule 394
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/2 
, -p, -q, 1 + (m + 1)/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; FreeQ[{a, b, c, 
 d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 1] && (Int 
egerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 395
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^ 
FracPart[p])   Int[(e*x)^m*(1 + b*(x^2/a))^p*(c + d*x^2)^q, x], x] /; FreeQ 
[{a, b, c, d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 
1] &&  !(IntegerQ[p] || GtQ[a, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [F]

\[\int \left (a +b \sec \left (f x +e \right )^{2}\right )^{p} \sin \left (f x +e \right )^{2}d x\]

Input:

int((a+b*sec(f*x+e)^2)^p*sin(f*x+e)^2,x)
 

Output:

int((a+b*sec(f*x+e)^2)^p*sin(f*x+e)^2,x)
 

Fricas [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sin \left (f x + e\right )^{2} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^p*sin(f*x+e)^2,x, algorithm="fricas")
 

Output:

integral(-(cos(f*x + e)^2 - 1)*(b*sec(f*x + e)^2 + a)^p, x)
 

Sympy [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\text {Timed out} \] Input:

integrate((a+b*sec(f*x+e)**2)**p*sin(f*x+e)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sin \left (f x + e\right )^{2} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^p*sin(f*x+e)^2,x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^p*sin(f*x + e)^2, x)
 

Giac [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \sin \left (f x + e\right )^{2} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^p*sin(f*x+e)^2,x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^p*sin(f*x + e)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\int {\sin \left (e+f\,x\right )}^2\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^p \,d x \] Input:

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^p,x)
 

Output:

int(sin(e + f*x)^2*(a + b/cos(e + f*x)^2)^p, x)
 

Reduce [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^p \sin ^2(e+f x) \, dx=\int \left (\sec \left (f x +e \right )^{2} b +a \right )^{p} \sin \left (f x +e \right )^{2}d x \] Input:

int((a+b*sec(f*x+e)^2)^p*sin(f*x+e)^2,x)
 

Output:

int((sec(e + f*x)**2*b + a)**p*sin(e + f*x)**2,x)