\(\int \sec ^3(e+f x) (a+b \sec ^2(e+f x))^2 \, dx\) [166]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 117 \[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx=\frac {\left (8 a^2+12 a b+5 b^2\right ) \text {arctanh}(\sin (e+f x))}{16 f}+\frac {\left (8 a^2+12 a b+5 b^2\right ) \sec (e+f x) \tan (e+f x)}{16 f}+\frac {b (12 a+5 b) \sec ^3(e+f x) \tan (e+f x)}{24 f}+\frac {b^2 \sec ^5(e+f x) \tan (e+f x)}{6 f} \] Output:

1/16*(8*a^2+12*a*b+5*b^2)*arctanh(sin(f*x+e))/f+1/16*(8*a^2+12*a*b+5*b^2)* 
sec(f*x+e)*tan(f*x+e)/f+1/24*b*(12*a+5*b)*sec(f*x+e)^3*tan(f*x+e)/f+1/6*b^ 
2*sec(f*x+e)^5*tan(f*x+e)/f
 

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.60 \[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx=\frac {a^2 \text {arctanh}(\sin (e+f x))}{2 f}+\frac {3 a b \text {arctanh}(\sin (e+f x))}{4 f}+\frac {5 b^2 \text {arctanh}(\sin (e+f x))}{16 f}+\frac {a^2 \sec (e+f x) \tan (e+f x)}{2 f}+\frac {3 a b \sec (e+f x) \tan (e+f x)}{4 f}+\frac {5 b^2 \sec (e+f x) \tan (e+f x)}{16 f}+\frac {a b \sec ^3(e+f x) \tan (e+f x)}{2 f}+\frac {5 b^2 \sec ^3(e+f x) \tan (e+f x)}{24 f}+\frac {b^2 \sec ^5(e+f x) \tan (e+f x)}{6 f} \] Input:

Integrate[Sec[e + f*x]^3*(a + b*Sec[e + f*x]^2)^2,x]
 

Output:

(a^2*ArcTanh[Sin[e + f*x]])/(2*f) + (3*a*b*ArcTanh[Sin[e + f*x]])/(4*f) + 
(5*b^2*ArcTanh[Sin[e + f*x]])/(16*f) + (a^2*Sec[e + f*x]*Tan[e + f*x])/(2* 
f) + (3*a*b*Sec[e + f*x]*Tan[e + f*x])/(4*f) + (5*b^2*Sec[e + f*x]*Tan[e + 
 f*x])/(16*f) + (a*b*Sec[e + f*x]^3*Tan[e + f*x])/(2*f) + (5*b^2*Sec[e + f 
*x]^3*Tan[e + f*x])/(24*f) + (b^2*Sec[e + f*x]^5*Tan[e + f*x])/(6*f)
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.16, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4635, 315, 25, 298, 215, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sec (e+f x)^3 \left (a+b \sec (e+f x)^2\right )^2dx\)

\(\Big \downarrow \) 4635

\(\displaystyle \frac {\int \frac {\left (-a \sin ^2(e+f x)+a+b\right )^2}{\left (1-\sin ^2(e+f x)\right )^4}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\frac {b \sin (e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}{6 \left (1-\sin ^2(e+f x)\right )^3}-\frac {1}{6} \int -\frac {(a+b) (6 a+5 b)-3 a (2 a+b) \sin ^2(e+f x)}{\left (1-\sin ^2(e+f x)\right )^3}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{6} \int \frac {(a+b) (6 a+5 b)-3 a (2 a+b) \sin ^2(e+f x)}{\left (1-\sin ^2(e+f x)\right )^3}d\sin (e+f x)+\frac {b \sin (e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}{6 \left (1-\sin ^2(e+f x)\right )^3}}{f}\)

\(\Big \downarrow \) 298

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} \left (8 a^2+12 a b+5 b^2\right ) \int \frac {1}{\left (1-\sin ^2(e+f x)\right )^2}d\sin (e+f x)+\frac {b (8 a+5 b) \sin (e+f x)}{4 \left (1-\sin ^2(e+f x)\right )^2}\right )+\frac {b \sin (e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}{6 \left (1-\sin ^2(e+f x)\right )^3}}{f}\)

\(\Big \downarrow \) 215

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} \left (8 a^2+12 a b+5 b^2\right ) \left (\frac {1}{2} \int \frac {1}{1-\sin ^2(e+f x)}d\sin (e+f x)+\frac {\sin (e+f x)}{2 \left (1-\sin ^2(e+f x)\right )}\right )+\frac {b (8 a+5 b) \sin (e+f x)}{4 \left (1-\sin ^2(e+f x)\right )^2}\right )+\frac {b \sin (e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}{6 \left (1-\sin ^2(e+f x)\right )^3}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{6} \left (\frac {3}{4} \left (8 a^2+12 a b+5 b^2\right ) \left (\frac {1}{2} \text {arctanh}(\sin (e+f x))+\frac {\sin (e+f x)}{2 \left (1-\sin ^2(e+f x)\right )}\right )+\frac {b (8 a+5 b) \sin (e+f x)}{4 \left (1-\sin ^2(e+f x)\right )^2}\right )+\frac {b \sin (e+f x) \left (-a \sin ^2(e+f x)+a+b\right )}{6 \left (1-\sin ^2(e+f x)\right )^3}}{f}\)

Input:

Int[Sec[e + f*x]^3*(a + b*Sec[e + f*x]^2)^2,x]
 

Output:

((b*Sin[e + f*x]*(a + b - a*Sin[e + f*x]^2))/(6*(1 - Sin[e + f*x]^2)^3) + 
((b*(8*a + 5*b)*Sin[e + f*x])/(4*(1 - Sin[e + f*x]^2)^2) + (3*(8*a^2 + 12* 
a*b + 5*b^2)*(ArcTanh[Sin[e + f*x]]/2 + Sin[e + f*x]/(2*(1 - Sin[e + f*x]^ 
2))))/4)/6)/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 215
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^2)^(p + 1) 
/(2*a*(p + 1))), x] + Simp[(2*p + 3)/(2*a*(p + 1))   Int[(a + b*x^2)^(p + 1 
), x], x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[6 
*p])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 298
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-( 
b*c - a*d))*x*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - Simp[(a*d - b*c*( 
2*p + 3))/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, 
 c, d, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/2 + p, 0])
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4635
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_ 
))^(p_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f 
 Subst[Int[ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2*x^2)^((m 
+ n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && In 
tegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p]
 
Maple [A] (verified)

Time = 2.28 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.26

method result size
derivativedivides \(\frac {a^{2} \left (\frac {\sec \left (f x +e \right ) \tan \left (f x +e \right )}{2}+\frac {\ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{2}\right )+2 a b \left (-\left (-\frac {\sec \left (f x +e \right )^{3}}{4}-\frac {3 \sec \left (f x +e \right )}{8}\right ) \tan \left (f x +e \right )+\frac {3 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{8}\right )+b^{2} \left (-\left (-\frac {\sec \left (f x +e \right )^{5}}{6}-\frac {5 \sec \left (f x +e \right )^{3}}{24}-\frac {5 \sec \left (f x +e \right )}{16}\right ) \tan \left (f x +e \right )+\frac {5 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{16}\right )}{f}\) \(147\)
default \(\frac {a^{2} \left (\frac {\sec \left (f x +e \right ) \tan \left (f x +e \right )}{2}+\frac {\ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{2}\right )+2 a b \left (-\left (-\frac {\sec \left (f x +e \right )^{3}}{4}-\frac {3 \sec \left (f x +e \right )}{8}\right ) \tan \left (f x +e \right )+\frac {3 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{8}\right )+b^{2} \left (-\left (-\frac {\sec \left (f x +e \right )^{5}}{6}-\frac {5 \sec \left (f x +e \right )^{3}}{24}-\frac {5 \sec \left (f x +e \right )}{16}\right ) \tan \left (f x +e \right )+\frac {5 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{16}\right )}{f}\) \(147\)
parts \(\frac {a^{2} \left (\frac {\sec \left (f x +e \right ) \tan \left (f x +e \right )}{2}+\frac {\ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{2}\right )}{f}+\frac {b^{2} \left (-\left (-\frac {\sec \left (f x +e \right )^{5}}{6}-\frac {5 \sec \left (f x +e \right )^{3}}{24}-\frac {5 \sec \left (f x +e \right )}{16}\right ) \tan \left (f x +e \right )+\frac {5 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{16}\right )}{f}+\frac {2 a b \left (-\left (-\frac {\sec \left (f x +e \right )^{3}}{4}-\frac {3 \sec \left (f x +e \right )}{8}\right ) \tan \left (f x +e \right )+\frac {3 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{8}\right )}{f}\) \(152\)
parallelrisch \(\frac {-360 \left (\frac {\cos \left (6 f x +6 e \right )}{15}+\frac {2 \cos \left (4 f x +4 e \right )}{5}+\cos \left (2 f x +2 e \right )+\frac {2}{3}\right ) \left (a^{2}+\frac {3}{2} a b +\frac {5}{8} b^{2}\right ) \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )+360 \left (\frac {\cos \left (6 f x +6 e \right )}{15}+\frac {2 \cos \left (4 f x +4 e \right )}{5}+\cos \left (2 f x +2 e \right )+\frac {2}{3}\right ) \left (a^{2}+\frac {3}{2} a b +\frac {5}{8} b^{2}\right ) \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )+\left (144 a^{2}+408 a b +170 b^{2}\right ) \sin \left (3 f x +3 e \right )+\left (48 a^{2}+72 a b +30 b^{2}\right ) \sin \left (5 f x +5 e \right )+96 \left (a^{2}+\frac {7}{2} a b +\frac {33}{8} b^{2}\right ) \sin \left (f x +e \right )}{48 f \left (\cos \left (6 f x +6 e \right )+6 \cos \left (4 f x +4 e \right )+15 \cos \left (2 f x +2 e \right )+10\right )}\) \(233\)
norman \(\frac {\frac {\left (8 a^{2}+4 a b +15 b^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}}{4 f}+\frac {\left (8 a^{2}+4 a b +15 b^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}}{4 f}+\frac {\left (8 a^{2}+20 a b +11 b^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{8 f}+\frac {\left (8 a^{2}+20 a b +11 b^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{11}}{8 f}-\frac {\left (72 a^{2}+84 a b -5 b^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{24 f}-\frac {\left (72 a^{2}+84 a b -5 b^{2}\right ) \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{9}}{24 f}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-1\right )^{6}}-\frac {\left (8 a^{2}+12 a b +5 b^{2}\right ) \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}{16 f}+\frac {\left (8 a^{2}+12 a b +5 b^{2}\right ) \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{16 f}\) \(267\)
risch \(-\frac {i {\mathrm e}^{i \left (f x +e \right )} \left (24 \,{\mathrm e}^{10 i \left (f x +e \right )} a^{2}+36 \,{\mathrm e}^{10 i \left (f x +e \right )} a b +15 b^{2} {\mathrm e}^{10 i \left (f x +e \right )}+72 a^{2} {\mathrm e}^{8 i \left (f x +e \right )}+204 \,{\mathrm e}^{8 i \left (f x +e \right )} a b +85 \,{\mathrm e}^{8 i \left (f x +e \right )} b^{2}+48 a^{2} {\mathrm e}^{6 i \left (f x +e \right )}+168 a b \,{\mathrm e}^{6 i \left (f x +e \right )}+198 b^{2} {\mathrm e}^{6 i \left (f x +e \right )}-48 a^{2} {\mathrm e}^{4 i \left (f x +e \right )}-168 a b \,{\mathrm e}^{4 i \left (f x +e \right )}-198 b^{2} {\mathrm e}^{4 i \left (f x +e \right )}-72 a^{2} {\mathrm e}^{2 i \left (f x +e \right )}-204 a b \,{\mathrm e}^{2 i \left (f x +e \right )}-85 b^{2} {\mathrm e}^{2 i \left (f x +e \right )}-24 a^{2}-36 a b -15 b^{2}\right )}{24 f \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )^{6}}-\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}-i\right ) a^{2}}{2 f}-\frac {3 \ln \left ({\mathrm e}^{i \left (f x +e \right )}-i\right ) a b}{4 f}-\frac {5 \ln \left ({\mathrm e}^{i \left (f x +e \right )}-i\right ) b^{2}}{16 f}+\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}+i\right ) a^{2}}{2 f}+\frac {3 \ln \left ({\mathrm e}^{i \left (f x +e \right )}+i\right ) a b}{4 f}+\frac {5 \ln \left ({\mathrm e}^{i \left (f x +e \right )}+i\right ) b^{2}}{16 f}\) \(406\)

Input:

int(sec(f*x+e)^3*(a+b*sec(f*x+e)^2)^2,x,method=_RETURNVERBOSE)
 

Output:

1/f*(a^2*(1/2*sec(f*x+e)*tan(f*x+e)+1/2*ln(sec(f*x+e)+tan(f*x+e)))+2*a*b*( 
-(-1/4*sec(f*x+e)^3-3/8*sec(f*x+e))*tan(f*x+e)+3/8*ln(sec(f*x+e)+tan(f*x+e 
)))+b^2*(-(-1/6*sec(f*x+e)^5-5/24*sec(f*x+e)^3-5/16*sec(f*x+e))*tan(f*x+e) 
+5/16*ln(sec(f*x+e)+tan(f*x+e))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.22 \[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx=\frac {3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )^{6} \log \left (\sin \left (f x + e\right ) + 1\right ) - 3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )^{6} \log \left (-\sin \left (f x + e\right ) + 1\right ) + 2 \, {\left (3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )^{4} + 2 \, {\left (12 \, a b + 5 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 8 \, b^{2}\right )} \sin \left (f x + e\right )}{96 \, f \cos \left (f x + e\right )^{6}} \] Input:

integrate(sec(f*x+e)^3*(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")
 

Output:

1/96*(3*(8*a^2 + 12*a*b + 5*b^2)*cos(f*x + e)^6*log(sin(f*x + e) + 1) - 3* 
(8*a^2 + 12*a*b + 5*b^2)*cos(f*x + e)^6*log(-sin(f*x + e) + 1) + 2*(3*(8*a 
^2 + 12*a*b + 5*b^2)*cos(f*x + e)^4 + 2*(12*a*b + 5*b^2)*cos(f*x + e)^2 + 
8*b^2)*sin(f*x + e))/(f*cos(f*x + e)^6)
 

Sympy [F]

\[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2} \sec ^{3}{\left (e + f x \right )}\, dx \] Input:

integrate(sec(f*x+e)**3*(a+b*sec(f*x+e)**2)**2,x)
 

Output:

Integral((a + b*sec(e + f*x)**2)**2*sec(e + f*x)**3, x)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.42 \[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx=\frac {3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \log \left (\sin \left (f x + e\right ) + 1\right ) - 3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \log \left (\sin \left (f x + e\right ) - 1\right ) - \frac {2 \, {\left (3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \sin \left (f x + e\right )^{5} - 8 \, {\left (6 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \sin \left (f x + e\right )^{3} + 3 \, {\left (8 \, a^{2} + 20 \, a b + 11 \, b^{2}\right )} \sin \left (f x + e\right )\right )}}{\sin \left (f x + e\right )^{6} - 3 \, \sin \left (f x + e\right )^{4} + 3 \, \sin \left (f x + e\right )^{2} - 1}}{96 \, f} \] Input:

integrate(sec(f*x+e)^3*(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")
 

Output:

1/96*(3*(8*a^2 + 12*a*b + 5*b^2)*log(sin(f*x + e) + 1) - 3*(8*a^2 + 12*a*b 
 + 5*b^2)*log(sin(f*x + e) - 1) - 2*(3*(8*a^2 + 12*a*b + 5*b^2)*sin(f*x + 
e)^5 - 8*(6*a^2 + 12*a*b + 5*b^2)*sin(f*x + e)^3 + 3*(8*a^2 + 20*a*b + 11* 
b^2)*sin(f*x + e))/(sin(f*x + e)^6 - 3*sin(f*x + e)^4 + 3*sin(f*x + e)^2 - 
 1))/f
 

Giac [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.56 \[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx=\frac {3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \log \left ({\left | \sin \left (f x + e\right ) + 1 \right |}\right ) - 3 \, {\left (8 \, a^{2} + 12 \, a b + 5 \, b^{2}\right )} \log \left ({\left | \sin \left (f x + e\right ) - 1 \right |}\right ) - \frac {2 \, {\left (24 \, a^{2} \sin \left (f x + e\right )^{5} + 36 \, a b \sin \left (f x + e\right )^{5} + 15 \, b^{2} \sin \left (f x + e\right )^{5} - 48 \, a^{2} \sin \left (f x + e\right )^{3} - 96 \, a b \sin \left (f x + e\right )^{3} - 40 \, b^{2} \sin \left (f x + e\right )^{3} + 24 \, a^{2} \sin \left (f x + e\right ) + 60 \, a b \sin \left (f x + e\right ) + 33 \, b^{2} \sin \left (f x + e\right )\right )}}{{\left (\sin \left (f x + e\right )^{2} - 1\right )}^{3}}}{96 \, f} \] Input:

integrate(sec(f*x+e)^3*(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")
 

Output:

1/96*(3*(8*a^2 + 12*a*b + 5*b^2)*log(abs(sin(f*x + e) + 1)) - 3*(8*a^2 + 1 
2*a*b + 5*b^2)*log(abs(sin(f*x + e) - 1)) - 2*(24*a^2*sin(f*x + e)^5 + 36* 
a*b*sin(f*x + e)^5 + 15*b^2*sin(f*x + e)^5 - 48*a^2*sin(f*x + e)^3 - 96*a* 
b*sin(f*x + e)^3 - 40*b^2*sin(f*x + e)^3 + 24*a^2*sin(f*x + e) + 60*a*b*si 
n(f*x + e) + 33*b^2*sin(f*x + e))/(sin(f*x + e)^2 - 1)^3)/f
 

Mupad [B] (verification not implemented)

Time = 16.02 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.15 \[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx=\frac {\mathrm {atanh}\left (\sin \left (e+f\,x\right )\right )\,\left (\frac {a^2}{2}+\frac {3\,a\,b}{4}+\frac {5\,b^2}{16}\right )}{f}-\frac {\left (\frac {a^2}{2}+\frac {3\,a\,b}{4}+\frac {5\,b^2}{16}\right )\,{\sin \left (e+f\,x\right )}^5+\left (-a^2-2\,a\,b-\frac {5\,b^2}{6}\right )\,{\sin \left (e+f\,x\right )}^3+\left (\frac {a^2}{2}+\frac {5\,a\,b}{4}+\frac {11\,b^2}{16}\right )\,\sin \left (e+f\,x\right )}{f\,\left ({\sin \left (e+f\,x\right )}^6-3\,{\sin \left (e+f\,x\right )}^4+3\,{\sin \left (e+f\,x\right )}^2-1\right )} \] Input:

int((a + b/cos(e + f*x)^2)^2/cos(e + f*x)^3,x)
                                                                                    
                                                                                    
 

Output:

(atanh(sin(e + f*x))*((3*a*b)/4 + a^2/2 + (5*b^2)/16))/f - (sin(e + f*x)*( 
(5*a*b)/4 + a^2/2 + (11*b^2)/16) - sin(e + f*x)^3*(2*a*b + a^2 + (5*b^2)/6 
) + sin(e + f*x)^5*((3*a*b)/4 + a^2/2 + (5*b^2)/16))/(f*(3*sin(e + f*x)^2 
- 3*sin(e + f*x)^4 + sin(e + f*x)^6 - 1))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 690, normalized size of antiderivative = 5.90 \[ \int \sec ^3(e+f x) \left (a+b \sec ^2(e+f x)\right )^2 \, dx =\text {Too large to display} \] Input:

int(sec(f*x+e)^3*(a+b*sec(f*x+e)^2)^2,x)
 

Output:

( - 24*log(tan((e + f*x)/2) - 1)*sin(e + f*x)**6*a**2 - 36*log(tan((e + f* 
x)/2) - 1)*sin(e + f*x)**6*a*b - 15*log(tan((e + f*x)/2) - 1)*sin(e + f*x) 
**6*b**2 + 72*log(tan((e + f*x)/2) - 1)*sin(e + f*x)**4*a**2 + 108*log(tan 
((e + f*x)/2) - 1)*sin(e + f*x)**4*a*b + 45*log(tan((e + f*x)/2) - 1)*sin( 
e + f*x)**4*b**2 - 72*log(tan((e + f*x)/2) - 1)*sin(e + f*x)**2*a**2 - 108 
*log(tan((e + f*x)/2) - 1)*sin(e + f*x)**2*a*b - 45*log(tan((e + f*x)/2) - 
 1)*sin(e + f*x)**2*b**2 + 24*log(tan((e + f*x)/2) - 1)*a**2 + 36*log(tan( 
(e + f*x)/2) - 1)*a*b + 15*log(tan((e + f*x)/2) - 1)*b**2 + 24*log(tan((e 
+ f*x)/2) + 1)*sin(e + f*x)**6*a**2 + 36*log(tan((e + f*x)/2) + 1)*sin(e + 
 f*x)**6*a*b + 15*log(tan((e + f*x)/2) + 1)*sin(e + f*x)**6*b**2 - 72*log( 
tan((e + f*x)/2) + 1)*sin(e + f*x)**4*a**2 - 108*log(tan((e + f*x)/2) + 1) 
*sin(e + f*x)**4*a*b - 45*log(tan((e + f*x)/2) + 1)*sin(e + f*x)**4*b**2 + 
 72*log(tan((e + f*x)/2) + 1)*sin(e + f*x)**2*a**2 + 108*log(tan((e + f*x) 
/2) + 1)*sin(e + f*x)**2*a*b + 45*log(tan((e + f*x)/2) + 1)*sin(e + f*x)** 
2*b**2 - 24*log(tan((e + f*x)/2) + 1)*a**2 - 36*log(tan((e + f*x)/2) + 1)* 
a*b - 15*log(tan((e + f*x)/2) + 1)*b**2 - 24*sin(e + f*x)**5*a**2 - 36*sin 
(e + f*x)**5*a*b - 15*sin(e + f*x)**5*b**2 + 48*sin(e + f*x)**3*a**2 + 96* 
sin(e + f*x)**3*a*b + 40*sin(e + f*x)**3*b**2 - 24*sin(e + f*x)*a**2 - 60* 
sin(e + f*x)*a*b - 33*sin(e + f*x)*b**2)/(48*f*(sin(e + f*x)**6 - 3*sin(e 
+ f*x)**4 + 3*sin(e + f*x)**2 - 1))