\(\int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\) [240]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 196 \[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {(a+b) \left (5 a^2-2 a b+b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{16 a^{5/2} f}+\frac {(3 a-b) (5 a+3 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{48 a^2 f}+\frac {(5 a+b) \cos ^3(e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{24 a f}+\frac {\cos ^5(e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{6 f} \] Output:

1/16*(a+b)*(5*a^2-2*a*b+b^2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2 
)^(1/2))/a^(5/2)/f+1/48*(3*a-b)*(5*a+3*b)*cos(f*x+e)*sin(f*x+e)*(a+b+b*tan 
(f*x+e)^2)^(1/2)/a^2/f+1/24*(5*a+b)*cos(f*x+e)^3*sin(f*x+e)*(a+b+b*tan(f*x 
+e)^2)^(1/2)/a/f+1/6*cos(f*x+e)^5*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 14.95 (sec) , antiderivative size = 1902, normalized size of antiderivative = 9.70 \[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx =\text {Too large to display} \] Input:

Integrate[Cos[e + f*x]^6*Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(3*(a + b)*AppellF1[1/2, -2, -1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2) 
/(a + b)]*Cos[e + f*x]^10*Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*Sqrt[a + b*Se 
c[e + f*x]^2]*Sin[e + f*x])/(f*(3*(a + b)*AppellF1[1/2, -2, -1/2, 3/2, Sin 
[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - (a*AppellF1[3/2, -2, 1/2, 5/2, 
Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + 4*(a + b)*AppellF1[3/2, -1, 
-1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Sin[e + f*x]^2)*(( 
3*(a + b)*AppellF1[1/2, -2, -1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/ 
(a + b)]*Cos[e + f*x]^5*Sqrt[a + 2*b + a*Cos[2*(e + f*x)]])/(3*(a + b)*App 
ellF1[1/2, -2, -1/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - (a 
*AppellF1[3/2, -2, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + 
 4*(a + b)*AppellF1[3/2, -1, -1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2) 
/(a + b)])*Sin[e + f*x]^2) - (12*(a + b)*AppellF1[1/2, -2, -1/2, 3/2, Sin[ 
e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^3*Sqrt[a + 2*b + a*Co 
s[2*(e + f*x)]]*Sin[e + f*x]^2)/(3*(a + b)*AppellF1[1/2, -2, -1/2, 3/2, Si 
n[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - (a*AppellF1[3/2, -2, 1/2, 5/2, 
 Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + 4*(a + b)*AppellF1[3/2, -1, 
 -1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Sin[e + f*x]^2) + 
 (3*(a + b)*Cos[e + f*x]^4*Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*Sin[e + f*x] 
*(-1/3*(a*f*AppellF1[3/2, -2, 1/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2) 
/(a + b)]*Cos[e + f*x]*Sin[e + f*x])/(a + b) - (4*f*AppellF1[3/2, -1, -...
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 215, normalized size of antiderivative = 1.10, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4634, 314, 25, 402, 25, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sec (e+f x)^2}}{\sec (e+f x)^6}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {\sqrt {b \tan ^2(e+f x)+a+b}}{\left (\tan ^2(e+f x)+1\right )^4}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 314

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}-\frac {1}{6} \int -\frac {4 b \tan ^2(e+f x)+5 (a+b)}{\left (\tan ^2(e+f x)+1\right )^3 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{6} \int \frac {4 b \tan ^2(e+f x)+5 (a+b)}{\left (\tan ^2(e+f x)+1\right )^3 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {1}{6} \left (\frac {(5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}-\frac {\int -\frac {2 b (5 a+b) \tan ^2(e+f x)+(15 a-b) (a+b)}{\left (\tan ^2(e+f x)+1\right )^2 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{4 a}\right )+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{6} \left (\frac {\int \frac {2 b (5 a+b) \tan ^2(e+f x)+(15 a-b) (a+b)}{\left (\tan ^2(e+f x)+1\right )^2 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{4 a}+\frac {(5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}\right )+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {1}{6} \left (\frac {\frac {(3 a-b) (5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}-\frac {\int -\frac {3 (a+b) \left (5 a^2-2 b a+b^2\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}}{4 a}+\frac {(5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}\right )+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{6} \left (\frac {\frac {3 (a+b) \left (5 a^2-2 a b+b^2\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}+\frac {(3 a-b) (5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}}{4 a}+\frac {(5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}\right )+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{6} \left (\frac {\frac {3 (a+b) \left (5 a^2-2 a b+b^2\right ) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{2 a}+\frac {(3 a-b) (5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}}{4 a}+\frac {(5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}\right )+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{6} \left (\frac {\frac {3 (a+b) \left (5 a^2-2 a b+b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 a^{3/2}}+\frac {(3 a-b) (5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}}{4 a}+\frac {(5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}\right )+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{6 \left (\tan ^2(e+f x)+1\right )^3}}{f}\)

Input:

Int[Cos[e + f*x]^6*Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

((Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(6*(1 + Tan[e + f*x]^2)^3) 
+ (((5*a + b)*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*a*(1 + Tan[e 
 + f*x]^2)^2) + ((3*(a + b)*(5*a^2 - 2*a*b + b^2)*ArcTan[(Sqrt[a]*Tan[e + 
f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*a^(3/2)) + ((3*a - b)*(5*a + 3*b 
)*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*a*(1 + Tan[e + f*x]^2))) 
/(4*a))/6)/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 314
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-x)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2*a*(p + 1))), x] + Simp[1/(2*a* 
(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1)*Simp[c*(2*p + 3) + d 
*(2*(p + q + 1) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && LtQ[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, 
 x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(624\) vs. \(2(176)=352\).

Time = 21.96 (sec) , antiderivative size = 625, normalized size of antiderivative = 3.19

method result size
default \(\frac {\left (15 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{3}+9 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{2} b -3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a \,b^{2}+3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) b^{3}+\left (8 \cos \left (f x +e \right )^{5}+8 \cos \left (f x +e \right )^{4}+10 \cos \left (f x +e \right )^{3}+10 \cos \left (f x +e \right )^{2}+15 \cos \left (f x +e \right )+15\right ) \sin \left (f x +e \right ) \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a^{2}+\left (2 \cos \left (f x +e \right )^{3}+2 \cos \left (f x +e \right )^{2}+4 \cos \left (f x +e \right )+4\right ) \sin \left (f x +e \right ) \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b +\left (-3 \cos \left (f x +e \right )-3\right ) \sin \left (f x +e \right ) \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2}\right ) \cos \left (f x +e \right ) \sqrt {a +b \sec \left (f x +e \right )^{2}}}{48 f \,a^{2} \sqrt {-a}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(625\)

Input:

int(cos(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/48/f/a^2/(-a)^(1/2)*(15*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e 
))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^ 
(1/2)-4*sin(f*x+e)*a)*a^3+9*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2 
)^(1/2)-4*sin(f*x+e)*a)*a^2*b-3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos 
(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e 
))^2)^(1/2)-4*sin(f*x+e)*a)*a*b^2+3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f 
*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*b^3+(8*cos(f*x+e)^5+8*cos(f*x+e)^4+10*cos( 
f*x+e)^3+10*cos(f*x+e)^2+15*cos(f*x+e)+15)*sin(f*x+e)*(-a)^(1/2)*((b+a*cos 
(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+(2*cos(f*x+e)^3+2*cos(f*x+e)^2+4*co 
s(f*x+e)+4)*sin(f*x+e)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*a*b+(-3*cos(f*x+e)-3)*sin(f*x+e)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos 
(f*x+e))^2)^(1/2)*b^2)*cos(f*x+e)*(a+b*sec(f*x+e)^2)^(1/2)/(1+cos(f*x+e))/ 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.95 (sec) , antiderivative size = 641, normalized size of antiderivative = 3.27 \[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx =\text {Too large to display} \] Input:

integrate(cos(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[-1/384*(3*(5*a^3 + 3*a^2*b - a*b^2 + b^3)*sqrt(-a)*log(128*a^4*cos(f*x + 
e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2 
)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 
- 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 
 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x 
+ e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*co 
s(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 8*(8*a^3*cos(f*x + e)^5 
+ 2*(5*a^3 + a^2*b)*cos(f*x + e)^3 + (15*a^3 + 4*a^2*b - 3*a*b^2)*cos(f*x 
+ e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^3*f), - 
1/192*(3*(5*a^3 + 3*a^2*b - a*b^2 + b^3)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x 
 + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e)) 
*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^ 
4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4*(8* 
a^3*cos(f*x + e)^5 + 2*(5*a^3 + a^2*b)*cos(f*x + e)^3 + (15*a^3 + 4*a^2*b 
- 3*a*b^2)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f 
*x + e))/(a^3*f)]
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**6*(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \cos \left (f x + e\right )^{6} \,d x } \] Input:

integrate(cos(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a)*cos(f*x + e)^6, x)
 

Giac [F]

\[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \cos \left (f x + e\right )^{6} \,d x } \] Input:

integrate(cos(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a)*cos(f*x + e)^6, x)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int {\cos \left (e+f\,x\right )}^6\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \] Input:

int(cos(e + f*x)^6*(a + b/cos(e + f*x)^2)^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int(cos(e + f*x)^6*(a + b/cos(e + f*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \cos ^6(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cos \left (f x +e \right )^{6}d x \] Input:

int(cos(f*x+e)^6*(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*cos(e + f*x)**6,x)