\(\int \sec ^2(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\) [249]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 111 \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {3 (a+b)^2 \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 \sqrt {b} f}+\frac {3 (a+b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 f}+\frac {\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 f} \] Output:

3/8*(a+b)^2*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(1/2) 
/f+3/8*(a+b)*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f+1/4*tan(f*x+e)*(a+b+b 
*tan(f*x+e)^2)^(3/2)/f
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.27 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.76 \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {(a+b)^2 \operatorname {Hypergeometric2F1}\left (\frac {1}{2},3,\frac {3}{2},\frac {b \sin ^2(e+f x)}{a+b-a \sin ^2(e+f x)}\right ) \sqrt {a+b \sec ^2(e+f x)} \sin (2 (e+f x))}{f (a+2 b+a \cos (2 (e+f x)))} \] Input:

Integrate[Sec[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

((a + b)^2*Hypergeometric2F1[1/2, 3, 3/2, (b*Sin[e + f*x]^2)/(a + b - a*Si 
n[e + f*x]^2)]*Sqrt[a + b*Sec[e + f*x]^2]*Sin[2*(e + f*x)])/(f*(a + 2*b + 
a*Cos[2*(e + f*x)]))
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.98, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3042, 4634, 211, 211, 224, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sec (e+f x)^2 \left (a+b \sec (e+f x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \left (b \tan ^2(e+f x)+a+b\right )^{3/2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 211

\(\displaystyle \frac {\frac {3}{4} (a+b) \int \sqrt {b \tan ^2(e+f x)+a+b}d\tan (e+f x)+\frac {1}{4} \tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

\(\Big \downarrow \) 211

\(\displaystyle \frac {\frac {3}{4} (a+b) \left (\frac {1}{2} (a+b) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\frac {1}{2} \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} \tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {3}{4} (a+b) \left (\frac {1}{2} (a+b) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+\frac {1}{2} \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} \tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {3}{4} (a+b) \left (\frac {(a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 \sqrt {b}}+\frac {1}{2} \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} \tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{f}\)

Input:

Int[Sec[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

((Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/4 + (3*(a + b)*(((a + b)* 
ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*Sqrt[b] 
) + (Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/2))/4)/f
 

Defintions of rubi rules used

rule 211
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x*((a + b*x^2)^p/(2*p + 1 
)), x] + Simp[2*a*(p/(2*p + 1))   Int[(a + b*x^2)^(p - 1), x], x] /; FreeQ[ 
{a, b}, x] && GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[6*p])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(828\) vs. \(2(95)=190\).

Time = 40.88 (sec) , antiderivative size = 829, normalized size of antiderivative = 7.47

method result size
default \(\text {Expression too large to display}\) \(829\)

Input:

int(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/16/f/b^(5/2)*(a+b*sec(f*x+e)^2)^(3/2)/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e)) 
^2)^(1/2)/(a*cos(f*x+e)^3+a*cos(f*x+e)^2+cos(f*x+e)*b+b)*(3*cos(f*x+e)^3*l 
n(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2 
)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e 
)+1))*a^2*b^2+6*cos(f*x+e)^3*ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+ 
e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2 
)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*a*b^3+3*cos(f*x+e)^3*ln(4*(b^(1/2)*((b 
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+ 
e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*b^4+3*cos( 
f*x+e)^3*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f* 
x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b) 
/(sin(f*x+e)-1))*a^2*b^2+6*cos(f*x+e)^3*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*a*b^3+3*cos(f*x+e)^3*ln(-4 
*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*( 
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1 
))*b^4+(6*cos(f*x+e)^3+6*cos(f*x+e)^2+4*cos(f*x+e)+4)*b^(7/2)*((b+a*cos(f* 
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*tan(f*x+e)+10*sin(f*x+e)*cos(f*x+e)*(1+cos 
(f*x+e))*b^(5/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a)
 

Fricas [A] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 390, normalized size of antiderivative = 3.51 \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left [\frac {3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {b} \cos \left (f x + e\right )^{3} \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) + 4 \, {\left ({\left (5 \, a b + 3 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{32 \, b f \cos \left (f x + e\right )^{3}}, \frac {3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} + 2 \, {\left ({\left (5 \, a b + 3 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{16 \, b f \cos \left (f x + e\right )^{3}}\right ] \] Input:

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[1/32*(3*(a^2 + 2*a*b + b^2)*sqrt(b)*cos(f*x + e)^3*log(((a^2 - 6*a*b + b^ 
2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e) 
^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2) 
*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*((5*a*b + 3*b^2)*cos(f*x + e)^2 
 + 2*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b*f*c 
os(f*x + e)^3), 1/16*(3*(a^2 + 2*a*b + b^2)*sqrt(-b)*arctan(-1/2*((a - b)* 
cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/co 
s(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)^3 + 
2*((5*a*b + 3*b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos 
(f*x + e)^2)*sin(f*x + e))/(b*f*cos(f*x + e)^3)]
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \sec ^{2}{\left (e + f x \right )}\, dx \] Input:

integrate(sec(f*x+e)**2*(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral((a + b*sec(e + f*x)**2)**(3/2)*sec(e + f*x)**2, x)
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.94 \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {\frac {3 \, {\left (a + b\right )} a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} + 3 \, {\left (a + b\right )} \sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) + 2 \, {\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}} \tan \left (f x + e\right ) + 3 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b} {\left (a + b\right )} \tan \left (f x + e\right )}{8 \, f} \] Input:

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

1/8*(3*(a + b)*a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/sqrt(b) + 3*(a + 
b)*sqrt(b)*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b)) + 2*(b*tan(f*x + e)^2 + 
 a + b)^(3/2)*tan(f*x + e) + 3*sqrt(b*tan(f*x + e)^2 + a + b)*(a + b)*tan( 
f*x + e))/f
 

Giac [F]

\[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \sec \left (f x + e\right )^{2} \,d x } \] Input:

integrate(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*sec(f*x + e)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int \frac {{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}}{{\cos \left (e+f\,x\right )}^2} \,d x \] Input:

int((a + b/cos(e + f*x)^2)^(3/2)/cos(e + f*x)^2,x)
 

Output:

int((a + b/cos(e + f*x)^2)^(3/2)/cos(e + f*x)^2, x)
 

Reduce [F]

\[ \int \sec ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )^{4}d x \right ) b +\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )^{2}d x \right ) a \] Input:

int(sec(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*sec(e + f*x)**4,x)*b + int(sqrt(sec(e + f* 
x)**2*b + a)*sec(e + f*x)**2,x)*a