\(\int \cos ^2(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\) [251]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 124 \[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {\sqrt {a} (a+3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac {a \cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f} \] Output:

1/2*a^(1/2)*(a+3*b)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/ 
f+b^(3/2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f+1/2*a*c 
os(f*x+e)*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 4.41 (sec) , antiderivative size = 466, normalized size of antiderivative = 3.76 \[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {e^{-i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos ^3(e+f x) \left (-i a \left (-1+e^{2 i (e+f x)}\right )+\frac {2 e^{2 i (e+f x)} \left (2 a^{3/2} f x+6 \sqrt {a} b f x-i \sqrt {a} (a+3 b) \log \left (e^{-2 i e} \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )\right )+i \sqrt {a} (a+3 b) \log \left (e^{-2 i e} \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )\right )-4 b^{3/2} \log \left (-\frac {e^{3 i e} \left (\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{2 b^2 \left (1+e^{2 i (e+f x)}\right )}\right )\right )}{\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{2 \sqrt {2} f (a+2 b+a \cos (2 e+2 f x))^{3/2}} \] Input:

Integrate[Cos[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f 
*x]^3*((-I)*a*(-1 + E^((2*I)*(e + f*x))) + (2*E^((2*I)*(e + f*x))*(2*a^(3/ 
2)*f*x + 6*Sqrt[a]*b*f*x - I*Sqrt[a]*(a + 3*b)*Log[(a + 2*b + a*E^((2*I)*( 
e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f* 
x)))^2])/E^((2*I)*e)] + I*Sqrt[a]*(a + 3*b)*Log[(a + a*E^((2*I)*(e + f*x)) 
 + 2*b*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + 
 E^((2*I)*(e + f*x)))^2])/E^((2*I)*e)] - 4*b^(3/2)*Log[-1/2*(E^((3*I)*e)*( 
Sqrt[b]*(-1 + E^((2*I)*(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 
 + E^((2*I)*(e + f*x)))^2])*f)/(b^2*(1 + E^((2*I)*(e + f*x))))]))/Sqrt[4*b 
*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*(a + b*Sec[e + f*x] 
^2)^(3/2))/(2*Sqrt[2]*E^(I*(e + f*x))*f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/ 
2))
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.03, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4634, 315, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sec (e+f x)^2\right )^{3/2}}{\sec (e+f x)^2}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {\left (b \tan ^2(e+f x)+a+b\right )^{3/2}}{\left (\tan ^2(e+f x)+1\right )^2}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\frac {1}{2} \int \frac {2 b^2 \tan ^2(e+f x)+(a+b) (a+2 b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\frac {a \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{2} \left (2 b^2 \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+a (a+3 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+\frac {a \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{2} \left (2 b^2 \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+a (a+3 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+\frac {a \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left (a (a+3 b) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+2 b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+\frac {a \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{2} \left (a (a+3 b) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+2 b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+\frac {a \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} \left (\sqrt {a} (a+3 b) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+2 b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+\frac {a \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 \left (\tan ^2(e+f x)+1\right )}}{f}\)

Input:

Int[Cos[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

((Sqrt[a]*(a + 3*b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f 
*x]^2]] + 2*b^(3/2)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + 
f*x]^2]])/2 + (a*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*(1 + Tan[ 
e + f*x]^2)))/f
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(506\) vs. \(2(106)=212\).

Time = 21.64 (sec) , antiderivative size = 507, normalized size of antiderivative = 4.09

method result size
default \(\frac {\left (\ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) \sqrt {-a}\, b^{\frac {3}{2}}+\ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) \sqrt {-a}\, b^{\frac {3}{2}}+\ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{2}+3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a b +\left (1+\cos \left (f x +e \right )\right ) \sin \left (f x +e \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {-a}\, a \right ) \cos \left (f x +e \right )^{3} \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}{2 f \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \left (a \cos \left (f x +e \right )^{3}+a \cos \left (f x +e \right )^{2}+\cos \left (f x +e \right ) b +b \right )}\) \(507\)

Input:

int(cos(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/f/(-a)^(1/2)*(ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2 
)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e 
)*a-a-b)/(sin(f*x+e)+1))*(-a)^(1/2)*b^(3/2)+ln(-4*(b^(1/2)*((b+a*cos(f*x+e 
)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos 
(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*(-a)^(1/2)*b^(3/2)+ln( 
4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a) 
^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^2+3*l 
n(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(- 
a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a*b+( 
1+cos(f*x+e))*sin(f*x+e)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(-a)^ 
(1/2)*a)*cos(f*x+e)^3*(a+b*sec(f*x+e)^2)^(3/2)/((b+a*cos(f*x+e)^2)/(1+cos( 
f*x+e))^2)^(1/2)/(a*cos(f*x+e)^3+a*cos(f*x+e)^2+cos(f*x+e)*b+b)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 276 vs. \(2 (106) = 212\).

Time = 0.45 (sec) , antiderivative size = 1403, normalized size of antiderivative = 11.31 \[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Too large to display} \] Input:

integrate(cos(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f* 
x + e) + sqrt(-a)*(a + 3*b)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b) 
*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 
 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - 
a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f* 
x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b 
+ 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f* 
x + e)^2)*sin(f*x + e)) + 4*b^(3/2)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^ 
4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x 
 + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 
8*b^2)/cos(f*x + e)^4))/f, 1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + 
 e)^2)*cos(f*x + e)*sin(f*x + e) + 8*sqrt(-b)*b*arctan(-1/2*((a - b)*cos(f 
*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x 
 + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) + sqrt(-a)*(a + 3*b)*l 
og(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 
 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a 
*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16 
*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2* 
b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e) 
)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/f...
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \] Input:

integrate(cos(f*x+e)**2*(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*cos(f*x + e)^2, x)
 

Giac [F]

\[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cos(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*cos(f*x + e)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int {\cos \left (e+f\,x\right )}^2\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \] Input:

int(cos(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int(cos(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \cos ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cos \left (f x +e \right )^{2} \sec \left (f x +e \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cos \left (f x +e \right )^{2}d x \right ) a \] Input:

int(cos(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*cos(e + f*x)**2*sec(e + f*x)**2,x)*b + int 
(sqrt(sec(e + f*x)**2*b + a)*cos(e + f*x)**2,x)*a