\(\int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [264]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 81 \[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=-\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 b^{3/2} f}+\frac {\tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 b f} \] Output:

-1/2*(a-b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(3/2)/ 
f+1/2*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/b/f
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 9.19 (sec) , antiderivative size = 326, normalized size of antiderivative = 4.02 \[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\sqrt {a+2 b+a \cos (2 e+2 f x)} \sec ^4(e+f x) \left (1-\frac {a \sin ^2(e+f x)}{a+b}\right ) \tan (e+f x) \left (\frac {16 b^2 \left (b+a \cos ^2(e+f x)\right ) \operatorname {Hypergeometric2F1}\left (2,3,\frac {7}{2},-\frac {b \tan ^2(e+f x)}{a+b}\right ) \tan ^4(e+f x) \sqrt {-\frac {b \sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right ) \tan ^2(e+f x)}{(a+b)^2}}}{(a+b)^3}+\frac {15 \left (3 b+a \left (3-2 \sin ^2(e+f x)\right )\right ) \left (\arcsin \left (\sqrt {-\frac {b \tan ^2(e+f x)}{a+b}}\right )-\sqrt {-\frac {b \sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right ) \tan ^2(e+f x)}{(a+b)^2}}\right )}{a+b}\right )}{30 \sqrt {2} f \sqrt {a+b \sec ^2(e+f x)} \sqrt {\frac {a+b \sec ^2(e+f x)}{a+b}} \sqrt {a+b-a \sin ^2(e+f x)} \left (-\frac {b \tan ^2(e+f x)}{a+b}\right )^{3/2}} \] Input:

Integrate[Sec[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]]*Sec[e + f*x]^4*(1 - (a*Sin[e + f*x]^2) 
/(a + b))*Tan[e + f*x]*((16*b^2*(b + a*Cos[e + f*x]^2)*Hypergeometric2F1[2 
, 3, 7/2, -((b*Tan[e + f*x]^2)/(a + b))]*Tan[e + f*x]^4*Sqrt[-((b*Sec[e + 
f*x]^2*(a + b - a*Sin[e + f*x]^2)*Tan[e + f*x]^2)/(a + b)^2)])/(a + b)^3 + 
 (15*(3*b + a*(3 - 2*Sin[e + f*x]^2))*(ArcSin[Sqrt[-((b*Tan[e + f*x]^2)/(a 
 + b))]] - Sqrt[-((b*Sec[e + f*x]^2*(a + b - a*Sin[e + f*x]^2)*Tan[e + f*x 
]^2)/(a + b)^2)]))/(a + b)))/(30*Sqrt[2]*f*Sqrt[a + b*Sec[e + f*x]^2]*Sqrt 
[(a + b*Sec[e + f*x]^2)/(a + b)]*Sqrt[a + b - a*Sin[e + f*x]^2]*(-((b*Tan[ 
e + f*x]^2)/(a + b)))^(3/2))
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.98, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4634, 299, 224, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (e+f x)^4}{\sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x)+1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 299

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {(a-b) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 b}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {(a-b) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{2 b}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {(a-b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 b^{3/2}}}{f}\)

Input:

Int[Sec[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(-1/2*((a - b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^ 
2]])/b^(3/2) + (Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*b))/f
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 299
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[d*x 
*((a + b*x^2)^(p + 1)/(b*(2*p + 3))), x] - Simp[(a*d - b*c*(2*p + 3))/(b*(2 
*p + 3))   Int[(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && NeQ[2*p + 3, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(571\) vs. \(2(69)=138\).

Time = 23.80 (sec) , antiderivative size = 572, normalized size of antiderivative = 7.06

method result size
default \(\frac {-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b \ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) \left (\sec \left (f x +e \right )+1\right )}{4}-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) \left (-1-\sec \left (f x +e \right )\right )}{4}-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b \ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) \left (\sec \left (f x +e \right )+1\right )}{4}-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) \left (-1-\sec \left (f x +e \right )\right )}{4}+\frac {b^{\frac {3}{2}} a \tan \left (f x +e \right )}{2}+\frac {b^{\frac {5}{2}} \tan \left (f x +e \right ) \sec \left (f x +e \right )^{2}}{2}}{f \,b^{\frac {5}{2}} \sqrt {a +b \sec \left (f x +e \right )^{2}}}\) \(572\)

Input:

int(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/f*(-1/4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b*ln(4*(b^(1/2)*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*(sec(f*x+ 
e)+1)-1/4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2*ln(4*(b^(1/2)*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*(-1-sec(f 
*x+e))-1/4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b*ln(-4*(b^(1/2)* 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*(sec(f* 
x+e)+1)-1/4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2*ln(-4*(b^(1/2) 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos( 
f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*(-1-se 
c(f*x+e))+1/2*b^(3/2)*a*tan(f*x+e)+1/2*b^(5/2)*tan(f*x+e)*sec(f*x+e)^2)/b^ 
(5/2)/(a+b*sec(f*x+e)^2)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 146 vs. \(2 (69) = 138\).

Time = 0.16 (sec) , antiderivative size = 324, normalized size of antiderivative = 4.00 \[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\left [-\frac {{\left (a - b\right )} \sqrt {b} \cos \left (f x + e\right ) \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) - 4 \, b \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{8 \, b^{2} f \cos \left (f x + e\right )}, -\frac {{\left (a - b\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right ) - 2 \, b \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{4 \, b^{2} f \cos \left (f x + e\right )}\right ] \] Input:

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[-1/8*((a - b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^ 
4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x 
 + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 
8*b^2)/cos(f*x + e)^4) - 4*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*s 
in(f*x + e))/(b^2*f*cos(f*x + e)), -1/4*((a - b)*sqrt(-b)*arctan(-1/2*((a 
- b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + 
b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) 
 - 2*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*co 
s(f*x + e))]
 

Sympy [F]

\[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sec ^{4}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \] Input:

integrate(sec(f*x+e)**4/(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(sec(e + f*x)**4/sqrt(a + b*sec(e + f*x)**2), x)
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 74, normalized size of antiderivative = 0.91 \[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=-\frac {\frac {a \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{b^{\frac {3}{2}}} - \frac {\operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right )}{\sqrt {b}} - \frac {\sqrt {b \tan \left (f x + e\right )^{2} + a + b} \tan \left (f x + e\right )}{b}}{2 \, f} \] Input:

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

-1/2*(a*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b))/b^(3/2) - arcsinh(b*tan(f* 
x + e)/sqrt((a + b)*b))/sqrt(b) - sqrt(b*tan(f*x + e)^2 + a + b)*tan(f*x + 
 e)/b)/f
 

Giac [F]

\[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(sec(f*x + e)^4/sqrt(b*sec(f*x + e)^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {1}{{\cos \left (e+f\,x\right )}^4\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \] Input:

int(1/(cos(e + f*x)^4*(a + b/cos(e + f*x)^2)^(1/2)),x)
 

Output:

int(1/(cos(e + f*x)^4*(a + b/cos(e + f*x)^2)^(1/2)), x)
 

Reduce [F]

\[ \int \frac {\sec ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )^{4}}{\sec \left (f x +e \right )^{2} b +a}d x \] Input:

int(sec(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*sec(e + f*x)**4)/(sec(e + f*x)**2*b + a), 
x)