\(\int \frac {\sec (e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [272]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 233 \[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {\sin (e+f x)}{(a+b) f \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}-\frac {E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right ) \left (a+b-a \sin ^2(e+f x)\right )}{a (a+b) f \sqrt {\cos ^2(e+f x)} \sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}}+\frac {\operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right ) \sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}}{a f \sqrt {\cos ^2(e+f x)} \sqrt {\sec ^2(e+f x) \left (a+b-a \sin ^2(e+f x)\right )}} \] Output:

sin(f*x+e)/(a+b)/f/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)-EllipticE(sin 
(f*x+e),(a/(a+b))^(1/2))*(a+b-a*sin(f*x+e)^2)/a/(a+b)/f/(cos(f*x+e)^2)^(1/ 
2)/((a+b-a*sin(f*x+e)^2)/(a+b))^(1/2)/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^ 
(1/2)+EllipticF(sin(f*x+e),(a/(a+b))^(1/2))*((a+b-a*sin(f*x+e)^2)/(a+b))^( 
1/2)/a/f/(cos(f*x+e)^2)^(1/2)/(sec(f*x+e)^2*(a+b-a*sin(f*x+e)^2))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 12.80 (sec) , antiderivative size = 206, normalized size of antiderivative = 0.88 \[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a+2 b+a \cos (2 (e+f x))) \sec (e+f x) \left (a^2 \sqrt {-\frac {1}{b}}+2 i \sqrt {2} (a+b) \sqrt {-\frac {a \cos ^2(e+f x)}{b}} \sqrt {a+2 b+a \cos (2 (e+f x))} \csc ^2(2 (e+f x)) E\left (i \text {arcsinh}\left (\frac {\sqrt {-\frac {1}{b}} \sqrt {a+2 b+a \cos (2 (e+f x))}}{\sqrt {2}}\right )|\frac {b}{a+b}\right ) \sqrt {\frac {a \sin ^2(e+f x)}{a+b}}\right ) \tan (e+f x)}{2 a^2 \sqrt {-\frac {1}{b}} (a+b) f \left (a+b \sec ^2(e+f x)\right )^{3/2}} \] Input:

Integrate[Sec[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]*(a^2*Sqrt[-b^(-1)] + (2*I)*Sq 
rt[2]*(a + b)*Sqrt[-((a*Cos[e + f*x]^2)/b)]*Sqrt[a + 2*b + a*Cos[2*(e + f* 
x)]]*Csc[2*(e + f*x)]^2*EllipticE[I*ArcSinh[(Sqrt[-b^(-1)]*Sqrt[a + 2*b + 
a*Cos[2*(e + f*x)]])/Sqrt[2]], b/(a + b)]*Sqrt[(a*Sin[e + f*x]^2)/(a + b)] 
)*Tan[e + f*x])/(2*a^2*Sqrt[-b^(-1)]*(a + b)*f*(a + b*Sec[e + f*x]^2)^(3/2 
))
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 247, normalized size of antiderivative = 1.06, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 4636, 2057, 2058, 314, 25, 389, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sec (e+f x)}{\left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4636

\(\displaystyle \frac {\int \frac {1}{\left (1-\sin ^2(e+f x)\right ) \left (a+\frac {b}{1-\sin ^2(e+f x)}\right )^{3/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 2057

\(\displaystyle \frac {\int \frac {1}{\left (1-\sin ^2(e+f x)\right ) \left (\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}\right )^{3/2}}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \int \frac {\sqrt {1-\sin ^2(e+f x)}}{\left (-a \sin ^2(e+f x)+a+b\right )^{3/2}}d\sin (e+f x)}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 314

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\sin (e+f x) \sqrt {1-\sin ^2(e+f x)}}{(a+b) \sqrt {-a \sin ^2(e+f x)+a+b}}-\frac {\int -\frac {\sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{a+b}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\int \frac {\sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{a+b}+\frac {\sqrt {1-\sin ^2(e+f x)} \sin (e+f x)}{(a+b) \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 389

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\frac {(a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {-a \sin ^2(e+f x)+a+b}}d\sin (e+f x)}{a}-\frac {\int \frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a}}{a+b}+\frac {\sqrt {1-\sin ^2(e+f x)} \sin (e+f x)}{(a+b) \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\frac {(a+b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}d\sin (e+f x)}{a \sqrt {-a \sin ^2(e+f x)+a+b}}-\frac {\int \frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a}}{a+b}+\frac {\sqrt {1-\sin ^2(e+f x)} \sin (e+f x)}{(a+b) \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\frac {(a+b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{a \sqrt {-a \sin ^2(e+f x)+a+b}}-\frac {\int \frac {\sqrt {-a \sin ^2(e+f x)+a+b}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a}}{a+b}+\frac {\sqrt {1-\sin ^2(e+f x)} \sin (e+f x)}{(a+b) \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\frac {(a+b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{a \sqrt {-a \sin ^2(e+f x)+a+b}}-\frac {\sqrt {-a \sin ^2(e+f x)+a+b} \int \frac {\sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{a \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}}{a+b}+\frac {\sqrt {1-\sin ^2(e+f x)} \sin (e+f x)}{(a+b) \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {-a \sin ^2(e+f x)+a+b} \left (\frac {\frac {(a+b) \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),\frac {a}{a+b}\right )}{a \sqrt {-a \sin ^2(e+f x)+a+b}}-\frac {\sqrt {-a \sin ^2(e+f x)+a+b} E\left (\arcsin (\sin (e+f x))\left |\frac {a}{a+b}\right .\right )}{a \sqrt {1-\frac {a \sin ^2(e+f x)}{a+b}}}}{a+b}+\frac {\sqrt {1-\sin ^2(e+f x)} \sin (e+f x)}{(a+b) \sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{f \sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {-a \sin ^2(e+f x)+a+b}{1-\sin ^2(e+f x)}}}\)

Input:

Int[Sec[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[a + b - a*Sin[e + f*x]^2]*((Sin[e + f*x]*Sqrt[1 - Sin[e + f*x]^2])/( 
(a + b)*Sqrt[a + b - a*Sin[e + f*x]^2]) + (-((EllipticE[ArcSin[Sin[e + f*x 
]], a/(a + b)]*Sqrt[a + b - a*Sin[e + f*x]^2])/(a*Sqrt[1 - (a*Sin[e + f*x] 
^2)/(a + b)])) + ((a + b)*EllipticF[ArcSin[Sin[e + f*x]], a/(a + b)]*Sqrt[ 
1 - (a*Sin[e + f*x]^2)/(a + b)])/(a*Sqrt[a + b - a*Sin[e + f*x]^2]))/(a + 
b)))/(f*Sqrt[1 - Sin[e + f*x]^2]*Sqrt[(a + b - a*Sin[e + f*x]^2)/(1 - Sin[ 
e + f*x]^2)])
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 314
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-x)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2*a*(p + 1))), x] + Simp[1/(2*a* 
(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1)*Simp[c*(2*p + 3) + d 
*(2*(p + q + 1) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && LtQ[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, 
 x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 389
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[1/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] - Simp[a/b   Int 
[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && N 
eQ[b*c - a*d, 0] &&  !SimplerSqrtQ[-b/a, -d/c]
 

rule 2057
Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u* 
((b + a*c + a*d*x^n)/(c + d*x^n))^p, x] /; FreeQ[{a, b, c, d, n, p}, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4636
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_ 
))^(p_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f 
 Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^p/(1 - ff^2*x^2)^((m + 1)/2), x], x 
, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] 
 && IntegerQ[n/2] &&  !IntegerQ[p]
 
Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 5.64 (sec) , antiderivative size = 1783, normalized size of antiderivative = 7.65

method result size
default \(\text {Expression too large to display}\) \(1783\)

Input:

int(sec(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/f/(2*I*a^(1/2)*b^(1/2)-a+b)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/(a+b 
)/a/(-(1-cos(f*x+e))^2*csc(f*x+e)^2+1)^3*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+ 
b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-c 
os(f*x+e))^2*csc(f*x+e)^2+a+b)/(a+b*sec(f*x+e)^2)^(3/2)*(I*(2*cot(f*x+e)-2 
*csc(f*x+e)-2*(1-cos(f*x+e))^3*csc(f*x+e)^3)*((I*b^(1/2)+a^(1/2))^2/(a+b)) 
^(1/2)*b^(3/2)*a^(1/2)+I*(-2*cot(f*x+e)+2*csc(f*x+e)-2*(1-cos(f*x+e))^3*cs 
c(f*x+e)^3)*((I*b^(1/2)+a^(1/2))^2/(a+b))^(1/2)*b^(1/2)*a^(3/2)+(cot(f*x+e 
)-csc(f*x+e)+(1-cos(f*x+e))^3*csc(f*x+e)^3)*a^2*((I*b^(1/2)+a^(1/2))^2/(a+ 
b))^(1/2)+(-(1-cos(f*x+e))^3*csc(f*x+e)^3+cot(f*x+e)-csc(f*x+e))*b^2*((I*b 
^(1/2)+a^(1/2))^2/(a+b))^(1/2)+(-2*cot(f*x+e)+2*csc(f*x+e))*b*a*((I*b^(1/2 
)+a^(1/2))^2/(a+b))^(1/2)+4*I*a^(3/2)*b^(1/2)*(1/(a+b)*(I*a^(1/2)*b^(1/2)* 
cos(f*x+e)-I*a^(1/2)*b^(1/2)+cos(f*x+e)*a+b)/(1+cos(f*x+e)))^(1/2)*((-I*a^ 
(1/2)*b^(1/2)*cos(f*x+e)+I*a^(1/2)*b^(1/2)+cos(f*x+e)*a+b)/(a+b)/(1+cos(f* 
x+e)))^(1/2)*EllipticF(((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*(csc(f*x+e) 
-cot(f*x+e)),(1/(a+b)^2*(-4*I*a^(3/2)*b^(1/2)+4*I*a^(1/2)*b^(3/2)+a^2-6*a* 
b+b^2))^(1/2))+4*I*a^(1/2)*b^(3/2)*(1/(a+b)*(I*a^(1/2)*b^(1/2)*cos(f*x+e)- 
I*a^(1/2)*b^(1/2)+cos(f*x+e)*a+b)/(1+cos(f*x+e)))^(1/2)*((-I*a^(1/2)*b^(1/ 
2)*cos(f*x+e)+I*a^(1/2)*b^(1/2)+cos(f*x+e)*a+b)/(a+b)/(1+cos(f*x+e)))^(1/2 
)*EllipticF(((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*(csc(f*x+e)-cot(f*x+e) 
),(1/(a+b)^2*(-4*I*a^(3/2)*b^(1/2)+4*I*a^(1/2)*b^(3/2)+a^2-6*a*b+b^2))^...
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.13 (sec) , antiderivative size = 762, normalized size of antiderivative = 3.27 \[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

1/2*(2*a^2*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2*sin( 
f*x + e) - 4*(I*a^2*cos(f*x + e)^2 + I*a*b)*sqrt(a)*sqrt((2*a*sqrt((a*b + 
b^2)/a^2) - a - 2*b)/a)*sqrt((a*b + b^2)/a^2)*elliptic_f(arcsin(sqrt((2*a* 
sqrt((a*b + b^2)/a^2) - a - 2*b)/a)*(cos(f*x + e) + I*sin(f*x + e))), (a^2 
 + 8*a*b + 8*b^2 + 4*(a^2 + 2*a*b)*sqrt((a*b + b^2)/a^2))/a^2) - 4*(-I*a^2 
*cos(f*x + e)^2 - I*a*b)*sqrt(a)*sqrt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b 
)/a)*sqrt((a*b + b^2)/a^2)*elliptic_f(arcsin(sqrt((2*a*sqrt((a*b + b^2)/a^ 
2) - a - 2*b)/a)*(cos(f*x + e) - I*sin(f*x + e))), (a^2 + 8*a*b + 8*b^2 + 
4*(a^2 + 2*a*b)*sqrt((a*b + b^2)/a^2))/a^2) + (2*(I*a^2*cos(f*x + e)^2 + I 
*a*b)*sqrt(a)*sqrt((a*b + b^2)/a^2) - ((I*a^2 + 2*I*a*b)*cos(f*x + e)^2 + 
I*a*b + 2*I*b^2)*sqrt(a))*sqrt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b)/a)*el 
liptic_e(arcsin(sqrt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b)/a)*(cos(f*x + e 
) + I*sin(f*x + e))), (a^2 + 8*a*b + 8*b^2 + 4*(a^2 + 2*a*b)*sqrt((a*b + b 
^2)/a^2))/a^2) + (2*(-I*a^2*cos(f*x + e)^2 - I*a*b)*sqrt(a)*sqrt((a*b + b^ 
2)/a^2) - ((-I*a^2 - 2*I*a*b)*cos(f*x + e)^2 - I*a*b - 2*I*b^2)*sqrt(a))*s 
qrt((2*a*sqrt((a*b + b^2)/a^2) - a - 2*b)/a)*elliptic_e(arcsin(sqrt((2*a*s 
qrt((a*b + b^2)/a^2) - a - 2*b)/a)*(cos(f*x + e) - I*sin(f*x + e))), (a^2 
+ 8*a*b + 8*b^2 + 4*(a^2 + 2*a*b)*sqrt((a*b + b^2)/a^2))/a^2))/((a^4 + a^3 
*b)*f*cos(f*x + e)^2 + (a^3*b + a^2*b^2)*f)
 

Sympy [F]

\[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sec {\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(sec(f*x+e)/(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral(sec(e + f*x)/(a + b*sec(e + f*x)**2)**(3/2), x)
 

Maxima [F]

\[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sec \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate(sec(f*x + e)/(b*sec(f*x + e)^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\sec \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate(sec(f*x + e)/(b*sec(f*x + e)^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{\cos \left (e+f\,x\right )\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \] Input:

int(1/(cos(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2)),x)
 

Output:

int(1/(cos(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\sec (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )}{\sec \left (f x +e \right )^{4} b^{2}+2 \sec \left (f x +e \right )^{2} a b +a^{2}}d x \] Input:

int(sec(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*sec(e + f*x))/(sec(e + f*x)**4*b**2 + 2*s 
ec(e + f*x)**2*a*b + a**2),x)