\(\int \frac {1}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [279]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 77 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{a^{3/2} f}-\frac {b \tan (e+f x)}{a (a+b) f \sqrt {a+b+b \tan ^2(e+f x)}} \] Output:

arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(3/2)/f-b*tan(f*x+ 
e)/a/(a+b)/f/(a+b+b*tan(f*x+e)^2)^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(168\) vs. \(2(77)=154\).

Time = 1.00 (sec) , antiderivative size = 168, normalized size of antiderivative = 2.18 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\frac {(a+2 b+a \cos (2 (e+f x))) \sec ^3(e+f x) \left (\sqrt {a+b} \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) (a+2 b+a \cos (2 (e+f x)))-\sqrt {2} \sqrt {a} b \sqrt {\frac {a+2 b+a \cos (2 (e+f x))}{a+b}} \sin (e+f x)\right )}{4 a^{3/2} (a+b) f \left (a+b \sec ^2(e+f x)\right )^{3/2} \sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}} \] Input:

Integrate[(a + b*Sec[e + f*x]^2)^(-3/2),x]
 

Output:

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(Sqrt[a + b]*ArcSin[(Sqrt[a 
]*Sin[e + f*x])/Sqrt[a + b]]*(a + 2*b + a*Cos[2*(e + f*x)]) - Sqrt[2]*Sqrt 
[a]*b*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/(a + b)]*Sin[e + f*x]))/(4*a^(3/ 
2)*(a + b)*f*(a + b*Sec[e + f*x]^2)^(3/2)*Sqrt[(a + b - a*Sin[e + f*x]^2)/ 
(a + b)])
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.97, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {3042, 4616, 296, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4616

\(\displaystyle \frac {\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 296

\(\displaystyle \frac {\frac {\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}-\frac {b \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}-\frac {b \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}-\frac {b \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

Input:

Int[(a + b*Sec[e + f*x]^2)^(-3/2),x]
 

Output:

(ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/a^(3/2) - ( 
b*Tan[e + f*x])/(a*(a + b)*Sqrt[a + b + b*Tan[e + f*x]^2]))/f
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 296
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[(b*c + 2*(p + 1)*(b*c - a*d))/(2*a*(p + 1)*(b*c - a*d))   Int[ 
(a + b*x^2)^(p + 1)*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && N 
eQ[b*c - a*d, 0] && EqQ[2*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1 
]) && NeQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4616
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + b + b*ff^2*x^2)^p 
/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
&& NeQ[a + b, 0] && NeQ[p, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(449\) vs. \(2(69)=138\).

Time = 4.49 (sec) , antiderivative size = 450, normalized size of antiderivative = 5.84

method result size
default \(\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a^{2} \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (\sec \left (f x +e \right )+1\right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (1+\sec \left (f x +e \right )+\sec \left (f x +e \right )^{2}+\sec \left (f x +e \right )^{3}\right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (\sec \left (f x +e \right )^{2}+\sec \left (f x +e \right )^{3}\right )-b a \sqrt {-a}\, \tan \left (f x +e \right )-\sqrt {-a}\, b^{2} \tan \left (f x +e \right ) \sec \left (f x +e \right )^{2}}{f \left (a +b \right ) a \sqrt {-a}\, \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}\) \(450\)

Input:

int(1/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/f/(a+b)/a/(-a)^(1/2)/(a+b*sec(f*x+e)^2)^(3/2)*(((b+a*cos(f*x+e)^2)/(1+co 
s(f*x+e))^2)^(1/2)*a^2*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^ 
2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/ 
2)-4*sin(f*x+e)*a)*(sec(f*x+e)+1)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*a*b*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f* 
x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e) 
*a)*(1+sec(f*x+e)+sec(f*x+e)^2+sec(f*x+e)^3)+((b+a*cos(f*x+e)^2)/(1+cos(f* 
x+e))^2)^(1/2)*b^2*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^( 
1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4 
*sin(f*x+e)*a)*(sec(f*x+e)^2+sec(f*x+e)^3)-b*a*(-a)^(1/2)*tan(f*x+e)-(-a)^ 
(1/2)*b^2*tan(f*x+e)*sec(f*x+e)^2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 240 vs. \(2 (69) = 138\).

Time = 0.26 (sec) , antiderivative size = 601, normalized size of antiderivative = 7.81 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate(1/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[-1/8*(8*a*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin( 
f*x + e) + ((a^2 + a*b)*cos(f*x + e)^2 + a*b + b^2)*sqrt(-a)*log(128*a^4*c 
os(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 
5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 
 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x 
 + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2) 
*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*s 
qrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/((a^4 + a^3*b)*f 
*cos(f*x + e)^2 + (a^3*b + a^2*b^2)*f), -1/4*(4*a*b*sqrt((a*cos(f*x + e)^2 
 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + ((a^2 + a*b)*cos(f*x + e 
)^2 + a*b + b^2)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)* 
cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x 
 + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 
 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))))/((a^4 + a^3*b)*f*cos(f*x + e)^ 
2 + (a^3*b + a^2*b^2)*f)]
 

Sympy [F]

\[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(1/(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral((a + b*sec(e + f*x)**2)**(-3/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2055 vs. \(2 (69) = 138\).

Time = 0.37 (sec) , antiderivative size = 2055, normalized size of antiderivative = 26.69 \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(1/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

-1/2*(2*a*b*cos(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2 
*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))*sin(2*f*x + 2 
*e) - 2*(a^2 + a*b)*sin(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2 
*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))^3 - 2 
*(a*b*cos(2*f*x + 2*e) + (a^2 + a*b)*cos(1/2*arctan2(a*sin(4*f*x + 4*e) + 
2*(a + 2*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 
 2*e) + a))^2 - a^2 - 2*a*b)*sin(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2 
*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + 
a)) - (a^2*cos(4*f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*b + 
4*b^2)*cos(2*f*x + 2*e)^2 + 4*(a^2 + 2*a*b)*sin(4*f*x + 4*e)*sin(2*f*x + 2 
*e) + 4*(a^2 + 4*a*b + 4*b^2)*sin(2*f*x + 2*e)^2 + a^2 + 2*(a^2 + 2*(a^2 + 
 2*a*b)*cos(2*f*x + 2*e))*cos(4*f*x + 4*e) + 4*(a^2 + 2*a*b)*cos(2*f*x + 2 
*e))^(1/4)*(((a + b)*cos(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin( 
2*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))^2 + 
(a + b)*sin(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e), 
 a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))^2)*arctan2(2*a*si 
n(2*f*x + 2*e) + 2*(a^2*cos(4*f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a 
^2 + 4*a*b + 4*b^2)*cos(2*f*x + 2*e)^2 + 4*(a^2 + 2*a*b)*sin(4*f*x + 4*e)* 
sin(2*f*x + 2*e) + 4*(a^2 + 4*a*b + 4*b^2)*sin(2*f*x + 2*e)^2 + a^2 + 2*(a 
^2 + 2*(a^2 + 2*a*b)*cos(2*f*x + 2*e))*cos(4*f*x + 4*e) + 4*(a^2 + 2*a*...
                                                                                    
                                                                                    
 

Giac [F]

\[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(-3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \] Input:

int(1/(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int(1/(a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {1}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}}{\sec \left (f x +e \right )^{4} b^{2}+2 \sec \left (f x +e \right )^{2} a b +a^{2}}d x \] Input:

int(1/(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)/(sec(e + f*x)**4*b**2 + 2*sec(e + f*x)**2* 
a*b + a**2),x)