\(\int \frac {\cos ^4(e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\) [294]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 261 \[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\frac {\left (3 a^2-10 a b+35 b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 a^{9/2} f}+\frac {(3 a-7 b) \cos (e+f x) \sin (e+f x)}{8 a^2 f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {\cos ^3(e+f x) \sin (e+f x)}{4 a f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {b \left (9 a^2-18 a b-35 b^2\right ) \tan (e+f x)}{24 a^3 (a+b) f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {b \left (9 a^3-15 a^2 b-145 a b^2-105 b^3\right ) \tan (e+f x)}{24 a^4 (a+b)^2 f \sqrt {a+b+b \tan ^2(e+f x)}} \] Output:

1/8*(3*a^2-10*a*b+35*b^2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^( 
1/2))/a^(9/2)/f+1/8*(3*a-7*b)*cos(f*x+e)*sin(f*x+e)/a^2/f/(a+b+b*tan(f*x+e 
)^2)^(3/2)+1/4*cos(f*x+e)^3*sin(f*x+e)/a/f/(a+b+b*tan(f*x+e)^2)^(3/2)+1/24 
*b*(9*a^2-18*a*b-35*b^2)*tan(f*x+e)/a^3/(a+b)/f/(a+b+b*tan(f*x+e)^2)^(3/2) 
+1/24*b*(9*a^3-15*a^2*b-145*a*b^2-105*b^3)*tan(f*x+e)/a^4/(a+b)^2/f/(a+b+b 
*tan(f*x+e)^2)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 16.13 (sec) , antiderivative size = 1777, normalized size of antiderivative = 6.81 \[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[Cos[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(5/2),x]
 

Output:

(3*(a + b)*AppellF1[1/2, -4, 5/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/ 
(a + b)]*Cos[e + f*x]^12*Sin[e + f*x])/(4*Sqrt[2]*f*(a + b*Sec[e + f*x]^2) 
^(5/2)*(a + b - a*Sin[e + f*x]^2)^(5/2)*(3*(a + b)*AppellF1[1/2, -4, 5/2, 
3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (5*a*AppellF1[3/2, -4, 
7/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 8*(a + b)*AppellF1 
[3/2, -3, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Sin[e + f 
*x]^2)*((15*a*(a + b)*AppellF1[1/2, -4, 5/2, 3/2, Sin[e + f*x]^2, (a*Sin[e 
 + f*x]^2)/(a + b)]*Cos[e + f*x]^9*Sin[e + f*x]^2)/(4*Sqrt[2]*(a + b - a*S 
in[e + f*x]^2)^(7/2)*(3*(a + b)*AppellF1[1/2, -4, 5/2, 3/2, Sin[e + f*x]^2 
, (a*Sin[e + f*x]^2)/(a + b)] + (5*a*AppellF1[3/2, -4, 7/2, 5/2, Sin[e + f 
*x]^2, (a*Sin[e + f*x]^2)/(a + b)] - 8*(a + b)*AppellF1[3/2, -3, 5/2, 5/2, 
 Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)])*Sin[e + f*x]^2)) + (3*(a + b 
)*AppellF1[1/2, -4, 5/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]* 
Cos[e + f*x]^9)/(4*Sqrt[2]*(a + b - a*Sin[e + f*x]^2)^(5/2)*(3*(a + b)*App 
ellF1[1/2, -4, 5/2, 3/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] + (5* 
a*AppellF1[3/2, -4, 7/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)] 
- 8*(a + b)*AppellF1[3/2, -3, 5/2, 5/2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2) 
/(a + b)])*Sin[e + f*x]^2)) - (3*Sqrt[2]*(a + b)*AppellF1[1/2, -4, 5/2, 3/ 
2, Sin[e + f*x]^2, (a*Sin[e + f*x]^2)/(a + b)]*Cos[e + f*x]^7*Sin[e + f*x] 
^2)/((a + b - a*Sin[e + f*x]^2)^(5/2)*(3*(a + b)*AppellF1[1/2, -4, 5/2,...
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.10, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 4634, 316, 25, 402, 25, 402, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (e+f x)^4 \left (a+b \sec (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4634

\(\displaystyle \frac {\int \frac {1}{\left (\tan ^2(e+f x)+1\right )^3 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int -\frac {6 b \tan ^2(e+f x)+3 a-b}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{4 a}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {6 b \tan ^2(e+f x)+3 a-b}{\left (\tan ^2(e+f x)+1\right )^2 \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {(3 a-7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int -\frac {3 a^2+2 b a+7 b^2+4 (3 a-7 b) b \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{2 a}}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\int \frac {3 a^2+2 b a+7 b^2+4 (3 a-7 b) b \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{2 a}+\frac {(3 a-7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {\frac {\int \frac {9 a^3-3 b a^2+39 b^2 a+35 b^3+2 b \left (9 a^2-18 b a-35 b^2\right ) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{3 a (a+b)}+\frac {b \left (9 a^2-18 a b-35 b^2\right ) \tan (e+f x)}{3 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}+\frac {(3 a-7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\frac {\frac {\frac {\int \frac {3 (a+b)^2 \left (3 a^2-10 b a+35 b^2\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a (a+b)}+\frac {b \left (9 a^3-15 a^2 b-145 a b^2-105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a (a+b)}+\frac {b \left (9 a^2-18 a b-35 b^2\right ) \tan (e+f x)}{3 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}+\frac {(3 a-7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\frac {\frac {3 (a+b) \left (3 a^2-10 a b+35 b^2\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}+\frac {b \left (9 a^3-15 a^2 b-145 a b^2-105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a (a+b)}+\frac {b \left (9 a^2-18 a b-35 b^2\right ) \tan (e+f x)}{3 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}+\frac {(3 a-7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\frac {\frac {\frac {3 (a+b) \left (3 a^2-10 a b+35 b^2\right ) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}+\frac {b \left (9 a^3-15 a^2 b-145 a b^2-105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a (a+b)}+\frac {b \left (9 a^2-18 a b-35 b^2\right ) \tan (e+f x)}{3 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{2 a}+\frac {(3 a-7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {\frac {b \left (9 a^2-18 a b-35 b^2\right ) \tan (e+f x)}{3 a (a+b) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}+\frac {\frac {3 (a+b) \left (3 a^2-10 a b+35 b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}+\frac {b \left (9 a^3-15 a^2 b-145 a b^2-105 b^3\right ) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a (a+b)}}{2 a}+\frac {(3 a-7 b) \tan (e+f x)}{2 a \left (\tan ^2(e+f x)+1\right ) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{4 a}+\frac {\tan (e+f x)}{4 a \left (\tan ^2(e+f x)+1\right )^2 \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

Input:

Int[Cos[e + f*x]^4/(a + b*Sec[e + f*x]^2)^(5/2),x]
 

Output:

(Tan[e + f*x]/(4*a*(1 + Tan[e + f*x]^2)^2*(a + b + b*Tan[e + f*x]^2)^(3/2) 
) + (((3*a - 7*b)*Tan[e + f*x])/(2*a*(1 + Tan[e + f*x]^2)*(a + b + b*Tan[e 
 + f*x]^2)^(3/2)) + ((b*(9*a^2 - 18*a*b - 35*b^2)*Tan[e + f*x])/(3*a*(a + 
b)*(a + b + b*Tan[e + f*x]^2)^(3/2)) + ((3*(a + b)*(3*a^2 - 10*a*b + 35*b^ 
2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/a^(3/2) 
+ (b*(9*a^3 - 15*a^2*b - 145*a*b^2 - 105*b^3)*Tan[e + f*x])/(a*(a + b)*Sqr 
t[a + b + b*Tan[e + f*x]^2]))/(3*a*(a + b)))/(2*a))/(4*a))/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4634
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_) 
)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f 
Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), 
x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ 
[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1341\) vs. \(2(237)=474\).

Time = 13.80 (sec) , antiderivative size = 1342, normalized size of antiderivative = 5.14

method result size
default \(\text {Expression too large to display}\) \(1342\)

Input:

int(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/24/f/a^4/(-a)^(1/2)/(a+b)^2*(cos(f*x+e)^4*(9*cos(f*x+e)+9)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^6*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+ 
cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f* 
x+e))^2)^(1/2)-4*sin(f*x+e)*a)+cos(f*x+e)^2*(-12*cos(f*x+e)^3-12*cos(f*x+e 
)^2+18*cos(f*x+e)+18)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^5*b*ln 
(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a 
)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)+(54*co 
s(f*x+e)^5+54*cos(f*x+e)^4-24*cos(f*x+e)^3-24*cos(f*x+e)^2+9*cos(f*x+e)+9) 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^4*b^2*ln(4*(-a)^(1/2)*((b+a 
*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)+(180*cos(f*x+e)^5+180*cos 
(f*x+e)^4+108*cos(f*x+e)^3+108*cos(f*x+e)^2-12*cos(f*x+e)-12)*((b+a*cos(f* 
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^3*b^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2 
)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+c 
os(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)+(105*cos(f*x+e)^5+105*cos(f*x+e)^4+360 
*cos(f*x+e)^3+360*cos(f*x+e)^2+54*cos(f*x+e)+54)*((b+a*cos(f*x+e)^2)/(1+co 
s(f*x+e))^2)^(1/2)*a^2*b^4*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+ 
e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)-4*sin(f*x+e)*a)+(210*cos(f*x+e)^3+210*cos(f*x+e)^2+180*cos(f*x+e)+1 
80)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b^5*ln(4*(-a)^(1/2)*(...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 533 vs. \(2 (237) = 474\).

Time = 4.80 (sec) , antiderivative size = 1187, normalized size of antiderivative = 4.55 \[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")
 

Output:

[-1/192*(3*(3*a^4*b^2 - 4*a^3*b^3 + 18*a^2*b^4 + 60*a*b^5 + 35*b^6 + (3*a^ 
6 - 4*a^5*b + 18*a^4*b^2 + 60*a^3*b^3 + 35*a^2*b^4)*cos(f*x + e)^4 + 2*(3* 
a^5*b - 4*a^4*b^2 + 18*a^3*b^3 + 60*a^2*b^4 + 35*a*b^5)*cos(f*x + e)^2)*sq 
rt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32* 
(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^ 
2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 
 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 
 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos( 
f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e 
)) - 8*(6*(a^6 + 2*a^5*b + a^4*b^2)*cos(f*x + e)^7 + 3*(3*a^6 - a^5*b - 11 
*a^4*b^2 - 7*a^3*b^3)*cos(f*x + e)^5 + 2*(9*a^5*b - 12*a^4*b^2 - 99*a^3*b^ 
3 - 70*a^2*b^4)*cos(f*x + e)^3 + (9*a^4*b^2 - 15*a^3*b^3 - 145*a^2*b^4 - 1 
05*a*b^5)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f* 
x + e))/((a^9 + 2*a^8*b + a^7*b^2)*f*cos(f*x + e)^4 + 2*(a^8*b + 2*a^7*b^2 
 + a^6*b^3)*f*cos(f*x + e)^2 + (a^7*b^2 + 2*a^6*b^3 + a^5*b^4)*f), -1/96*( 
3*(3*a^4*b^2 - 4*a^3*b^3 + 18*a^2*b^4 + 60*a*b^5 + 35*b^6 + (3*a^6 - 4*a^5 
*b + 18*a^4*b^2 + 60*a^3*b^3 + 35*a^2*b^4)*cos(f*x + e)^4 + 2*(3*a^5*b - 4 
*a^4*b^2 + 18*a^3*b^3 + 60*a^2*b^4 + 35*a*b^5)*cos(f*x + e)^2)*sqrt(a)*arc 
tan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a* 
b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)...
 

Sympy [F]

\[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\cos ^{4}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(cos(f*x+e)**4/(a+b*sec(f*x+e)**2)**(5/2),x)
 

Output:

Integral(cos(e + f*x)**4/(a + b*sec(e + f*x)**2)**(5/2), x)
 

Maxima [F]

\[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")
 

Output:

integrate(cos(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\cos \left (f x + e\right )^{4}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")
 

Output:

integrate(cos(f*x + e)^4/(b*sec(f*x + e)^2 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^4}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{5/2}} \,d x \] Input:

int(cos(e + f*x)^4/(a + b/cos(e + f*x)^2)^(5/2),x)
 

Output:

int(cos(e + f*x)^4/(a + b/cos(e + f*x)^2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^4(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cos \left (f x +e \right )^{4}}{\sec \left (f x +e \right )^{6} b^{3}+3 \sec \left (f x +e \right )^{4} a \,b^{2}+3 \sec \left (f x +e \right )^{2} a^{2} b +a^{3}}d x \] Input:

int(cos(f*x+e)^4/(a+b*sec(f*x+e)^2)^(5/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*cos(e + f*x)**4)/(sec(e + f*x)**6*b**3 + 
3*sec(e + f*x)**4*a*b**2 + 3*sec(e + f*x)**2*a**2*b + a**3),x)