\(\int \cot (e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\) [392]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 91 \[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}-\frac {(a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{f}+\frac {b \sqrt {a+b \sec ^2(e+f x)}}{f} \] Output:

a^(3/2)*arctanh((a+b*sec(f*x+e)^2)^(1/2)/a^(1/2))/f-(a+b)^(3/2)*arctanh((a 
+b*sec(f*x+e)^2)^(1/2)/(a+b)^(1/2))/f+b*(a+b*sec(f*x+e)^2)^(1/2)/f
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 3.47 (sec) , antiderivative size = 506, normalized size of antiderivative = 5.56 \[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {\sqrt {2} e^{i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos ^3(e+f x) \left (\frac {2 b}{1+e^{2 i (e+f x)}}+\frac {-2 i a^{3/2} f x+2 (a+b)^{3/2} \log \left (1-e^{2 i (e+f x)}\right )+a^{3/2} \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+a^{3/2} \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-2 a \sqrt {a+b} \log \left (a+b+a e^{2 i (e+f x)}+b e^{2 i (e+f x)}+\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-2 b \sqrt {a+b} \log \left (a+b+a e^{2 i (e+f x)}+b e^{2 i (e+f x)}+\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )}{\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{f (a+2 b+a \cos (2 e+2 f x))^{3/2}} \] Input:

Integrate[Cot[e + f*x]*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[2]*E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2* 
I)*(e + f*x))]*Cos[e + f*x]^3*((2*b)/(1 + E^((2*I)*(e + f*x))) + ((-2*I)*a 
^(3/2)*f*x + 2*(a + b)^(3/2)*Log[1 - E^((2*I)*(e + f*x))] + a^(3/2)*Log[a 
+ 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*( 
1 + E^((2*I)*(e + f*x)))^2]] + a^(3/2)*Log[a + a*E^((2*I)*(e + f*x)) + 2*b 
*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2 
*I)*(e + f*x)))^2]] - 2*a*Sqrt[a + b]*Log[a + b + a*E^((2*I)*(e + f*x)) + 
b*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + 
E^((2*I)*(e + f*x)))^2]] - 2*b*Sqrt[a + b]*Log[a + b + a*E^((2*I)*(e + f*x 
)) + b*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a* 
(1 + E^((2*I)*(e + f*x)))^2]])/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2 
*I)*(e + f*x)))^2])*(a + b*Sec[e + f*x]^2)^(3/2))/(f*(a + 2*b + a*Cos[2*e 
+ 2*f*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 91, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 4627, 25, 354, 95, 25, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sec (e+f x)^2\right )^{3/2}}{\tan (e+f x)}dx\)

\(\Big \downarrow \) 4627

\(\displaystyle \frac {\int -\frac {\cos (e+f x) \left (b \sec ^2(e+f x)+a\right )^{3/2}}{1-\sec ^2(e+f x)}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\cos (e+f x) \left (b \sec ^2(e+f x)+a\right )^{3/2}}{1-\sec ^2(e+f x)}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {\int \frac {\cos (e+f x) \left (b \sec ^2(e+f x)+a\right )^{3/2}}{1-\sec ^2(e+f x)}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 95

\(\displaystyle -\frac {-\int -\frac {\cos (e+f x) \left (a^2+b (2 a+b) \sec ^2(e+f x)\right )}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)-2 b \sqrt {a+b \sec ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\cos (e+f x) \left (a^2+b (2 a+b) \sec ^2(e+f x)\right )}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)-2 b \sqrt {a+b \sec ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 174

\(\displaystyle -\frac {a^2 \int \frac {\cos (e+f x)}{\sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)+(a+b)^2 \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)-2 b \sqrt {a+b \sec ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\frac {2 a^2 \int \frac {1}{\frac {\sec ^4(e+f x)}{b}-\frac {a}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}+\frac {2 (a+b)^2 \int \frac {1}{\frac {a+b}{b}-\frac {\sec ^4(e+f x)}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}-2 b \sqrt {a+b \sec ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {-2 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )+2 (a+b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )-2 b \sqrt {a+b \sec ^2(e+f x)}}{2 f}\)

Input:

Int[Cot[e + f*x]*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

-1/2*(-2*a^(3/2)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]] + 2*(a + b)^( 
3/2)*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a + b]] - 2*b*Sqrt[a + b*Sec[ 
e + f*x]^2])/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 95
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Simp[f*((e + f*x)^(p - 1)/(b*d*(p - 1))), x] + Simp[1/(b*d)   Int[(b 
*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*((e + f*x)^(p - 2)/((a + 
b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4627
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + ( 
f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Si 
mp[1/f   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x), x] 
, x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[( 
m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || Integers 
Q[2*n, p])
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1300\) vs. \(2(77)=154\).

Time = 6.80 (sec) , antiderivative size = 1301, normalized size of antiderivative = 14.30

method result size
default \(\text {Expression too large to display}\) \(1301\)

Input:

int(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/f/(a+b)^(5/2)*(a+b*sec(f*x+e)^2)^(3/2)/(1+cos(f*x+e))/(b+a*cos(f*x+e)^ 
2)/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(2*a^(3/2)*(a+b)^(5/2)*ln(4 
*a^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*a^(1/2)* 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+4*cos(f*x+e)*a)*cos(f*x+e)^3+l 
n(2/(a+b)^(1/2)*((a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*c 
os(f*x+e)+(a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+ 
e)*a+b)/(1+cos(f*x+e)))*a^4*cos(f*x+e)^3+4*ln(2/(a+b)^(1/2)*((a+b)^(1/2)*( 
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+(a+b)^(1/2)*((b+a*co 
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e)))*a^3*b* 
cos(f*x+e)^3+6*ln(2/(a+b)^(1/2)*((a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f* 
x+e))^2)^(1/2)*cos(f*x+e)+(a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2 
)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e)))*a^2*b^2*cos(f*x+e)^3+4*ln(2/(a+b)^ 
(1/2)*((a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+ 
(a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)*a+b)/(1 
+cos(f*x+e)))*a*b^3*cos(f*x+e)^3+ln(2/(a+b)^(1/2)*((a+b)^(1/2)*((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+(a+b)^(1/2)*((b+a*cos(f*x+e)^2 
)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e)))*b^4*cos(f*x+e)^3 
-ln(-4*((a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e) 
+(a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+cos(f*x+e)*a+b)/( 
-1+cos(f*x+e)))*a^4*cos(f*x+e)^3-4*ln(-4*((a+b)^(1/2)*((b+a*cos(f*x+e)^...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 224 vs. \(2 (77) = 154\).

Time = 0.40 (sec) , antiderivative size = 1075, normalized size of antiderivative = 11.81 \[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Too large to display} \] Input:

integrate(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[1/8*(a^(3/2)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160* 
a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3*cos(f*x 
 + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3*cos(f*x 
+ e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + 2*(a + b)^( 
3/2)*log(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f 
*x + e)^2 + b^2 - 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + 
 b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f 
*x + e)^2 + 1)) + 8*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/f, 1/8* 
(4*(a + b)*sqrt(-a - b)*arctan(1/2*((2*a + b)*cos(f*x + e)^2 + b)*sqrt(-a 
- b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b)*cos(f*x + e) 
^2 + a*b + b^2)) + a^(3/2)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x 
+ e)^6 + 160*a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(1 
6*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + 
 b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) 
+ 8*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/f, -1/4*(sqrt(-a)*a*arc 
tan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt( 
(a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + e)^4 + 3*a^2*b*cos 
(f*x + e)^2 + a*b^2)) - (a + b)^(3/2)*log(2*((8*a^2 + 8*a*b + b^2)*cos(f*x 
 + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + b^2 - 4*((2*a + b)*cos(f*x + 
e)^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*...
 

Sympy [F]

\[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \cot {\left (e + f x \right )}\, dx \] Input:

integrate(cot(f*x+e)*(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral((a + b*sec(e + f*x)**2)**(3/2)*cot(e + f*x), x)
 

Maxima [F]

\[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right ) \,d x } \] Input:

integrate(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*cot(f*x + e), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 718 vs. \(2 (77) = 154\).

Time = 4.01 (sec) , antiderivative size = 718, normalized size of antiderivative = 7.89 \[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Too large to display} \] Input:

integrate(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

-1/2*(4*a^2*arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1 
/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 
+ 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))/sqrt(-a))*sgn(cos(f*x 
 + e))/sqrt(-a) - (a + b)^(3/2)*log(abs(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 
 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2* 
f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b)))*sgn(c 
os(f*x + e)) + (a + b)^(3/2)*log(abs(-sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 + 
 sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f* 
x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b)))*sgn(cos 
(f*x + e)) + (a^2 + 2*a*b + b^2)*log(abs(-(sqrt(a + b)*tan(1/2*f*x + 1/2*e 
)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1 
/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*(a + b) + sqrt(a 
+ b)*(a - b)))*sgn(cos(f*x + e))/sqrt(a + b) - 8*((sqrt(a + b)*tan(1/2*f*x 
 + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2 
*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*b^2*sgn(c 
os(f*x + e)) + sqrt(a + b)*b^2*sgn(cos(f*x + e)))/((sqrt(a + b)*tan(1/2*f* 
x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 
2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))^2 - 2*(s 
qrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan( 
1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2...
 

Mupad [F(-1)]

Timed out. \[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int \mathrm {cot}\left (e+f\,x\right )\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \] Input:

int(cot(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int(cot(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \cot (e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right ) \sec \left (f x +e \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right )d x \right ) a \] Input:

int(cot(f*x+e)*(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*cot(e + f*x)*sec(e + f*x)**2,x)*b + int(sq 
rt(sec(e + f*x)**2*b + a)*cot(e + f*x),x)*a