\(\int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [403]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 56 \[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f}+\frac {\sqrt {a+b \sec ^2(e+f x)}}{b f} \] Output:

arctanh((a+b*sec(f*x+e)^2)^(1/2)/a^(1/2))/a^(1/2)/f+(a+b*sec(f*x+e)^2)^(1/ 
2)/b/f
 

Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 56, normalized size of antiderivative = 1.00 \[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f}+\frac {\sqrt {a+b \sec ^2(e+f x)}}{b f} \] Input:

Integrate[Tan[e + f*x]^3/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f) + Sqrt[a + b*Sec[e 
 + f*x]^2]/(b*f)
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 59, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4627, 25, 354, 90, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^3}{\sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4627

\(\displaystyle \frac {\int -\frac {\cos (e+f x) \left (1-\sec ^2(e+f x)\right )}{\sqrt {b \sec ^2(e+f x)+a}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\cos (e+f x) \left (1-\sec ^2(e+f x)\right )}{\sqrt {b \sec ^2(e+f x)+a}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {\int \frac {\cos (e+f x) \left (1-\sec ^2(e+f x)\right )}{\sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 90

\(\displaystyle -\frac {\int \frac {\cos (e+f x)}{\sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)-\frac {2 \sqrt {a+b \sec ^2(e+f x)}}{b}}{2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\frac {2 \int \frac {1}{\frac {\sec ^4(e+f x)}{b}-\frac {a}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}-\frac {2 \sqrt {a+b \sec ^2(e+f x)}}{b}}{2 f}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a}}-\frac {2 \sqrt {a+b \sec ^2(e+f x)}}{b}}{2 f}\)

Input:

Int[Tan[e + f*x]^3/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

-1/2*((-2*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/Sqrt[a] - (2*Sqrt[a 
 + b*Sec[e + f*x]^2])/b)/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 90
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p 
_.), x_] :> Simp[b*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), 
 x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n + p 
+ 2))   Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, 
p}, x] && NeQ[n + p + 2, 0]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4627
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + ( 
f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Si 
mp[1/f   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x), x] 
, x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[( 
m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || Integers 
Q[2*n, p])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(153\) vs. \(2(48)=96\).

Time = 4.44 (sec) , antiderivative size = 154, normalized size of antiderivative = 2.75

method result size
default \(\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a}\, \cos \left (f x +e \right )+4 \sqrt {a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+4 \cos \left (f x +e \right ) a \right ) b \left (\sec \left (f x +e \right )+1\right )+a^{\frac {3}{2}}+\sqrt {a}\, b \sec \left (f x +e \right )^{2}}{f b \sqrt {a}\, \sqrt {a +b \sec \left (f x +e \right )^{2}}}\) \(154\)

Input:

int(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/f/b/a^(1/2)/(a+b*sec(f*x+e)^2)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e)) 
^2)^(1/2)*ln(4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)*cos(f*x 
+e)+4*a^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+4*cos(f*x+e)*a)* 
b*(sec(f*x+e)+1)+a^(3/2)+a^(1/2)*b*sec(f*x+e)^2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 140 vs. \(2 (48) = 96\).

Time = 0.19 (sec) , antiderivative size = 328, normalized size of antiderivative = 5.86 \[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\left [\frac {\sqrt {a} b \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} + 256 \, a^{3} b \cos \left (f x + e\right )^{6} + 160 \, a^{2} b^{2} \cos \left (f x + e\right )^{4} + 32 \, a b^{3} \cos \left (f x + e\right )^{2} + b^{4} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{8} + 24 \, a^{2} b \cos \left (f x + e\right )^{6} + 10 \, a b^{2} \cos \left (f x + e\right )^{4} + b^{3} \cos \left (f x + e\right )^{2}\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}\right ) + 8 \, a \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{8 \, a b f}, -\frac {\sqrt {-a} b \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{4} + 8 \, a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} + 3 \, a^{2} b \cos \left (f x + e\right )^{2} + a b^{2}\right )}}\right ) - 4 \, a \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, a b f}\right ] \] Input:

integrate(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[1/8*(sqrt(a)*b*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 16 
0*a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3*cos(f 
*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3*cos(f* 
x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + 8*a*sqrt( 
(a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(a*b*f), -1/4*(sqrt(-a)*b*arctan(1 
/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b^2)*sqrt(-a)*sqrt((a*co 
s(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + e)^4 + 3*a^2*b*cos(f*x 
+ e)^2 + a*b^2)) - 4*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(a*b*f 
)]
 

Sympy [F]

\[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\tan ^{3}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \] Input:

integrate(tan(f*x+e)**3/(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(tan(e + f*x)**3/sqrt(a + b*sec(e + f*x)**2), x)
 

Maxima [F]

\[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\tan \left (f x + e\right )^{3}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(tan(f*x + e)^3/sqrt(b*sec(f*x + e)^2 + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (48) = 96\).

Time = 0.50 (sec) , antiderivative size = 373, normalized size of antiderivative = 6.66 \[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=-\frac {2 \, {\left (\frac {\arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} - \frac {2 \, {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b}\right )}}{{\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )}^{2} - 2 \, {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} \sqrt {a + b} + a - 3 \, b}\right )}}{f \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} \] Input:

integrate(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

-2*(arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 
 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*ta 
n(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))/sqrt(-a))/sqrt(-a) - 2*(sqrt( 
a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2* 
f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + 
 a + b) + sqrt(a + b))/((sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1 
/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 
+ 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))^2 - 2*(sqrt(a + b)*tan(1/2*f*x + 1/ 
2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*ta 
n(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*sqrt(a + b) + 
a - 3*b))/(f*sgn(cos(f*x + e)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^3}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \] Input:

int(tan(e + f*x)^3/(a + b/cos(e + f*x)^2)^(1/2),x)
 

Output:

int(tan(e + f*x)^3/(a + b/cos(e + f*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^3(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \tan \left (f x +e \right )^{3}}{\sec \left (f x +e \right )^{2} b +a}d x \] Input:

int(tan(f*x+e)^3/(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*tan(e + f*x)**3)/(sec(e + f*x)**2*b + a), 
x)