\(\int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [405]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 70 \[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a} f}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b} f} \] Output:

arctanh((a+b*sec(f*x+e)^2)^(1/2)/a^(1/2))/a^(1/2)/f-arctanh((a+b*sec(f*x+e 
)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(1/2)/f
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.64 (sec) , antiderivative size = 294, normalized size of antiderivative = 4.20 \[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2} \left (-2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b} \left (1+e^{2 i (e+f x)}\right )}{\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right )+\sqrt {a+b} \left (\text {arctanh}\left (\frac {a+2 b+a e^{2 i (e+f x)}}{\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right )+\text {arctanh}\left (\frac {a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}}{\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right )\right )\right )}{2 \sqrt {a} \sqrt {a+b} \left (1+e^{2 i (e+f x)}\right ) f \sqrt {a+b \sec ^2(e+f x)}} \] Input:

Integrate[Cot[e + f*x]/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]*(-2*Sqrt[a] 
*ArcTanh[(Sqrt[a + b]*(1 + E^((2*I)*(e + f*x))))/Sqrt[4*b*E^((2*I)*(e + f* 
x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + Sqrt[a + b]*(ArcTanh[(a + 2*b + a* 
E^((2*I)*(e + f*x)))/(Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2* 
I)*(e + f*x)))^2])] + ArcTanh[(a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e 
 + f*x)))/(Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x 
)))^2])])))/(2*Sqrt[a]*Sqrt[a + b]*(1 + E^((2*I)*(e + f*x)))*f*Sqrt[a + b* 
Sec[e + f*x]^2])
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4627, 25, 354, 97, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (e+f x) \sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4627

\(\displaystyle \frac {\int -\frac {\cos (e+f x)}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {\cos (e+f x)}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle -\frac {\int \frac {\cos (e+f x)}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 97

\(\displaystyle -\frac {\int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)+\int \frac {\cos (e+f x)}{\sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle -\frac {\frac {2 \int \frac {1}{\frac {a+b}{b}-\frac {\sec ^4(e+f x)}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}+\frac {2 \int \frac {1}{\frac {\sec ^4(e+f x)}{b}-\frac {a}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}}{2 f}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{\sqrt {a}}}{2 f}\)

Input:

Int[Cot[e + f*x]/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

-1/2*((-2*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]])/Sqrt[a] + (2*ArcTan 
h[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a + b]])/Sqrt[a + b])/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 97
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), 
x_] :> Simp[b/(b*c - a*d)   Int[(e + f*x)^p/(a + b*x), x], x] - Simp[d/(b*c 
 - a*d)   Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, p}, 
 x] &&  !IntegerQ[p]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4627
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + ( 
f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Si 
mp[1/f   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x), x] 
, x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[( 
m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || Integers 
Q[2*n, p])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(342\) vs. \(2(58)=116\).

Time = 0.30 (sec) , antiderivative size = 343, normalized size of antiderivative = 4.90

method result size
default \(-\frac {\left (\ln \left (-\frac {4 \left (\sqrt {a +b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}+\cos \left (f x +e \right ) a +b \right )}{\cos \left (f x +e \right )-1}\right ) \sqrt {a}-\ln \left (\frac {2 \sqrt {a +b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+2 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a +b}-2 \cos \left (f x +e \right ) a +2 b}{\sqrt {a +b}\, \left (1+\cos \left (f x +e \right )\right )}\right ) \sqrt {a}-2 \ln \left (4 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {a}\, \cos \left (f x +e \right )+4 \sqrt {a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+4 \cos \left (f x +e \right ) a \right ) \sqrt {a +b}\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \left (\sec \left (f x +e \right )+1\right )}{2 f \sqrt {a +b}\, \sqrt {a}\, \sqrt {a +b \sec \left (f x +e \right )^{2}}}\) \(343\)

Input:

int(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/2/f/(a+b)^(1/2)/a^(1/2)*(ln(-4*((a+b)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos( 
f*x+e))^2)^(1/2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a 
+b)^(1/2)+cos(f*x+e)*a+b)/(cos(f*x+e)-1))*a^(1/2)-ln(2/(a+b)^(1/2)*((a+b)^ 
(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e))) 
*a^(1/2)-2*ln(4*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^(1/2)*cos(f* 
x+e)+4*a^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+4*cos(f*x+e)*a) 
*(a+b)^(1/2))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)/(a+b*sec(f*x+e)^ 
2)^(1/2)*(sec(f*x+e)+1)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 207 vs. \(2 (58) = 116\).

Time = 0.24 (sec) , antiderivative size = 1015, normalized size of antiderivative = 14.50 \[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\text {Too large to display} \] Input:

integrate(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[1/8*((a + b)*sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^ 
6 + 160*a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3 
*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3* 
cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)) + 2*s 
qrt(a + b)*a*log(2*((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^ 
2)*cos(f*x + e)^2 + b^2 - 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)* 
sqrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 
 2*cos(f*x + e)^2 + 1)))/((a^2 + a*b)*f), 1/8*(4*a*sqrt(-a - b)*arctan(1/2 
*((2*a + b)*cos(f*x + e)^2 + b)*sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/c 
os(f*x + e)^2)/((a^2 + a*b)*cos(f*x + e)^2 + a*b + b^2)) + (a + b)*sqrt(a) 
*log(128*a^4*cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f 
*x + e)^4 + 32*a*b^3*cos(f*x + e)^2 + b^4 + 8*(16*a^3*cos(f*x + e)^8 + 24* 
a^2*b*cos(f*x + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3*cos(f*x + e)^2)*sqrt( 
a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)))/((a^2 + a*b)*f), -1/4*(sq 
rt(-a)*(a + b)*arctan(1/4*(8*a^2*cos(f*x + e)^4 + 8*a*b*cos(f*x + e)^2 + b 
^2)*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(2*a^3*cos(f*x + 
e)^4 + 3*a^2*b*cos(f*x + e)^2 + a*b^2)) - sqrt(a + b)*a*log(2*((8*a^2 + 8* 
a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + b^2 - 4*((2 
*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a*cos(f*x + e 
)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 1)))/((a...
 

Sympy [F]

\[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\cot {\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \] Input:

integrate(cot(f*x+e)/(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(cot(e + f*x)/sqrt(a + b*sec(e + f*x)**2), x)
 

Maxima [F]

\[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\cot \left (f x + e\right )}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(cot(f*x + e)/sqrt(b*sec(f*x + e)^2 + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 403 vs. \(2 (58) = 116\).

Time = 0.66 (sec) , antiderivative size = 403, normalized size of antiderivative = 5.76 \[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=-\frac {\frac {4 \, \arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} + \frac {\log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b} \right |}\right )}{\sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \sqrt {a + b} \right |}\right )}{\sqrt {a + b}} + \frac {\log \left ({\left | {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{\sqrt {a + b}}}{2 \, f \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} \] Input:

integrate(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

-1/2*(4*arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f 
*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2* 
b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))/sqrt(-a))/sqrt(-a) + log( 
abs(-sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x + 1/2*e)^4 + 
b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 
1/2*e)^2 + a + b) + sqrt(a + b)))/sqrt(a + b) - log(abs(-sqrt(a + b)*tan(1 
/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e) 
^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) - sq 
rt(a + b)))/sqrt(a + b) + log(abs((sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sq 
rt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 
 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*(a + b) - sqrt(a + b)*(a 
- b)))/sqrt(a + b))/(f*sgn(cos(f*x + e)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\mathrm {cot}\left (e+f\,x\right )}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \] Input:

int(cot(e + f*x)/(a + b/cos(e + f*x)^2)^(1/2),x)
 

Output:

int(cot(e + f*x)/(a + b/cos(e + f*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cot (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right )}{\sec \left (f x +e \right )^{2} b +a}d x \] Input:

int(cot(f*x+e)/(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*cot(e + f*x))/(sec(e + f*x)**2*b + a),x)