\(\int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [408]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 173 \[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{\sqrt {a} f}+\frac {\left (3 a^2+10 a b+15 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 b^{5/2} f}-\frac {(3 a+7 b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 b^2 f}+\frac {\tan ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 b f} \] Output:

-arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(1/2)/f+1/8*(3*a^ 
2+10*a*b+15*b^2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^ 
(5/2)/f-1/8*(3*a+7*b)*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/b^2/f+1/4*tan( 
f*x+e)^3*(a+b+b*tan(f*x+e)^2)^(1/2)/b/f
 

Mathematica [A] (verified)

Time = 2.25 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.33 \[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=-\frac {\left (\frac {8 b^2 \arctan \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )}{\sqrt {a}}-\frac {\left (3 a^2+10 a b+15 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )}{\sqrt {b}}\right ) \sqrt {a+2 b+a \cos (2 e+2 f x)} \sec (e+f x)}{8 \sqrt {2} b^2 f \sqrt {a+b \sec ^2(e+f x)}}-\frac {(a+2 b+a \cos (2 (e+f x))) (3 a+5 b+3 (a+3 b) \cos (2 (e+f x))) \sec ^4(e+f x) \tan (e+f x)}{32 b^2 f \sqrt {a+b \sec ^2(e+f x)}} \] Input:

Integrate[Tan[e + f*x]^6/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

-1/8*(((8*b^2*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2] 
])/Sqrt[a] - ((3*a^2 + 10*a*b + 15*b^2)*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqr 
t[a + b - a*Sin[e + f*x]^2]])/Sqrt[b])*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]]* 
Sec[e + f*x])/(Sqrt[2]*b^2*f*Sqrt[a + b*Sec[e + f*x]^2]) - ((a + 2*b + a*C 
os[2*(e + f*x)])*(3*a + 5*b + 3*(a + 3*b)*Cos[2*(e + f*x)])*Sec[e + f*x]^4 
*Tan[e + f*x])/(32*b^2*f*Sqrt[a + b*Sec[e + f*x]^2])
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4629, 2075, 381, 444, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^6}{\sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\tan ^6(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {a+b \left (\tan ^2(e+f x)+1\right )}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\tan ^6(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 381

\(\displaystyle \frac {\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b}-\frac {\int \frac {\tan ^2(e+f x) \left ((3 a+7 b) \tan ^2(e+f x)+3 (a+b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{4 b}}{f}\)

\(\Big \downarrow \) 444

\(\displaystyle \frac {\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b}-\frac {\frac {(3 a+7 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {\int \frac {\left (3 a^2+10 b a+15 b^2\right ) \tan ^2(e+f x)+(a+b) (3 a+7 b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 b}}{4 b}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b}-\frac {\frac {(3 a+7 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {\left (3 a^2+10 a b+15 b^2\right ) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-8 b^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 b}}{4 b}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b}-\frac {\frac {(3 a+7 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {\left (3 a^2+10 a b+15 b^2\right ) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}-8 b^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 b}}{4 b}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b}-\frac {\frac {(3 a+7 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {\frac {\left (3 a^2+10 a b+15 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-8 b^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 b}}{4 b}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b}-\frac {\frac {(3 a+7 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {\frac {\left (3 a^2+10 a b+15 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-8 b^2 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{2 b}}{4 b}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 b}-\frac {\frac {(3 a+7 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b}-\frac {\frac {\left (3 a^2+10 a b+15 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-\frac {8 b^2 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a}}}{2 b}}{4 b}}{f}\)

Input:

Int[Tan[e + f*x]^6/Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

((Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*b) - (-1/2*((-8*b^2*Ar 
cTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/Sqrt[a] + ((3 
*a^2 + 10*a*b + 15*b^2)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[ 
e + f*x]^2]])/Sqrt[b])/b + ((3*a + 7*b)*Tan[e + f*x]*Sqrt[a + b + b*Tan[e 
+ f*x]^2])/(2*b))/(4*b))/f
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 381
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
+ 1)/(b*d*(m + 2*(p + q) + 1))), x] - Simp[e^4/(b*d*(m + 2*(p + q) + 1)) 
Int[(e*x)^(m - 4)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*c*(m - 3) + (a*d*(m + 
2*q - 1) + b*c*(m + 2*p - 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q 
}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 3] && IntBinomialQ[a, b, c, d, e, m, 2 
, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 444
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q 
_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[f*g*(g*x)^(m - 1)*(a + b*x^2)^ 
(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q + 1) + 1))), x] - Simp[g^2/ 
(b*d*(m + 2*(p + q + 1) + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2) 
^q*Simp[a*f*c*(m - 1) + (a*f*d*(m + 2*q + 1) + b*(f*c*(m + 2*p + 1) - e*d*( 
m + 2*(p + q + 1) + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, 
q}, x] && GtQ[m, 1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1053\) vs. \(2(151)=302\).

Time = 13.00 (sec) , antiderivative size = 1054, normalized size of antiderivative = 6.09

method result size
default \(\text {Expression too large to display}\) \(1054\)

Input:

int(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

-1/16/f/b^(9/2)/(-a)^(1/2)/(a+b*sec(f*x+e)^2)^(1/2)*(3*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)*(-a)^(1/2)*a^2*b^2*ln(4*(b^(1/2)*((b+a*cos(f*x+e) 
^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos( 
f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*(-1-sec(f*x+e))+10*((b+ 
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(-a)^(1/2)*a*b^3*ln(4*(b^(1/2)*((b 
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+ 
e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*(-1-sec(f* 
x+e))+15*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(-a)^(1/2)*b^4*ln(4*( 
b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b 
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1)) 
*(-1-sec(f*x+e))+3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(-a)^(1/2)* 
a^2*b^2*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x 
+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/ 
(sin(f*x+e)-1))*(-1-sec(f*x+e))+10*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^( 
1/2)*(-a)^(1/2)*a*b^3*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin( 
f*x+e)*a+a+b)/(sin(f*x+e)-1))*(-1-sec(f*x+e))+15*((b+a*cos(f*x+e)^2)/(1+co 
s(f*x+e))^2)^(1/2)*(-a)^(1/2)*b^4*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+co 
s(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2 
)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*(-1-sec(f*x+e))+16*b^(9/2)*((...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 342 vs. \(2 (151) = 302\).

Time = 1.20 (sec) , antiderivative size = 1673, normalized size of antiderivative = 9.67 \[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\text {Too large to display} \] Input:

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[-1/32*(4*sqrt(-a)*b^3*cos(f*x + e)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^ 
4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e) 
^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7* 
a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2 
*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 
- 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + 
 b)/cos(f*x + e)^2)*sin(f*x + e)) - (3*a^3 + 10*a^2*b + 15*a*b^2)*sqrt(b)* 
cos(f*x + e)^3*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos 
(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt(( 
a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4 
) - 4*(2*a*b^2 - 3*(a^2*b + 3*a*b^2)*cos(f*x + e)^2)*sqrt((a*cos(f*x + e)^ 
2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a*b^3*f*cos(f*x + e)^3), -1/16*(2*sq 
rt(-a)*b^3*cos(f*x + e)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*c 
os(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 2 
8*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a* 
b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x 
+ e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 
7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x 
+ e)^2)*sin(f*x + e)) - (3*a^3 + 10*a^2*b + 15*a*b^2)*sqrt(-b)*arctan(-1/2 
*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x +...
 

Sympy [F]

\[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\tan ^{6}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \] Input:

integrate(tan(f*x+e)**6/(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(tan(e + f*x)**6/sqrt(a + b*sec(e + f*x)**2), x)
 

Maxima [F]

\[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\tan \left (f x + e\right )^{6}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(tan(f*x + e)^6/sqrt(b*sec(f*x + e)^2 + a), x)
 

Giac [F]

\[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\tan \left (f x + e\right )^{6}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \] Input:

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(tan(f*x + e)^6/sqrt(b*sec(f*x + e)^2 + a), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^6}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \] Input:

int(tan(e + f*x)^6/(a + b/cos(e + f*x)^2)^(1/2),x)
 

Output:

int(tan(e + f*x)^6/(a + b/cos(e + f*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^6(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \tan \left (f x +e \right )^{6}}{\sec \left (f x +e \right )^{2} b +a}d x \] Input:

int(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*tan(e + f*x)**6)/(sec(e + f*x)**2*b + a), 
x)