\(\int \frac {\tan ^2(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [423]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 71 \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{a^{3/2} f}+\frac {\tan (e+f x)}{a f \sqrt {a+b+b \tan ^2(e+f x)}} \] Output:

-arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(3/2)/f+tan(f*x+e 
)/a/f/(a+b+b*tan(f*x+e)^2)^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(169\) vs. \(2(71)=142\).

Time = 1.69 (sec) , antiderivative size = 169, normalized size of antiderivative = 2.38 \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {(a+2 b+a \cos (2 (e+f x))) \sec ^3(e+f x) \left (\arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) (a+2 b+a \cos (2 (e+f x)))-\sqrt {2} \sqrt {a} \sqrt {a+b} \sqrt {\frac {a+2 b+a \cos (2 (e+f x))}{a+b}} \sin (e+f x)\right )}{4 a^{3/2} \sqrt {a+b} f \left (a+b \sec ^2(e+f x)\right )^{3/2} \sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}} \] Input:

Integrate[Tan[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

-1/4*((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(ArcSin[(Sqrt[a]*Sin[e 
 + f*x])/Sqrt[a + b]]*(a + 2*b + a*Cos[2*(e + f*x)]) - Sqrt[2]*Sqrt[a]*Sqr 
t[a + b]*Sqrt[(a + 2*b + a*Cos[2*(e + f*x)])/(a + b)]*Sin[e + f*x]))/(a^(3 
/2)*Sqrt[a + b]*f*(a + b*Sec[e + f*x]^2)^(3/2)*Sqrt[(a + b - a*Sin[e + f*x 
]^2)/(a + b)])
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.97, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3042, 4629, 2075, 373, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^2}{\left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\tan (e+f x)}{a \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\tan (e+f x)}{a \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\tan (e+f x)}{a \sqrt {a+b \tan ^2(e+f x)+b}}-\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}}{f}\)

Input:

Int[Tan[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(-(ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/a^(3/2)) 
+ Tan[e + f*x]/(a*Sqrt[a + b + b*Tan[e + f*x]^2]))/f
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(281\) vs. \(2(63)=126\).

Time = 2.29 (sec) , antiderivative size = 282, normalized size of antiderivative = 3.97

method result size
default \(-\frac {\left (b +a \cos \left (f x +e \right )^{2}\right ) \left (\cos \left (f x +e \right ) \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sqrt {-a}\, \sin \left (f x +e \right )+\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right )\right ) \sec \left (f x +e \right )^{3}}{f a \sqrt {-a}\, \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}\) \(282\)

Input:

int(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/f/a/(-a)^(1/2)*(b+a*cos(f*x+e)^2)*(cos(f*x+e)*ln(4*(-a)^(1/2)*((b+a*cos 
(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e 
)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f* 
x+e))^2)^(1/2)-(-a)^(1/2)*sin(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x 
+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)* 
a))/(a+b*sec(f*x+e)^2)^(3/2)*sec(f*x+e)^3
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 213 vs. \(2 (63) = 126\).

Time = 0.26 (sec) , antiderivative size = 548, normalized size of antiderivative = 7.72 \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\left [\frac {8 \, a \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - {\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} - 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right )}{8 \, {\left (a^{3} f \cos \left (f x + e\right )^{2} + a^{2} b f\right )}}, \frac {4 \, a \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} + b\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right )}{4 \, {\left (a^{3} f \cos \left (f x + e\right )^{2} + a^{2} b f\right )}}\right ] \] Input:

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[1/8*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x 
 + e) - (a*cos(f*x + e)^2 + b)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*( 
a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + 
e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 
7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a 
^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^ 
3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 
 + b)/cos(f*x + e)^2)*sin(f*x + e)))/(a^3*f*cos(f*x + e)^2 + a^2*b*f), 1/4 
*(4*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e 
) + (a*cos(f*x + e)^2 + b)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a 
^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt( 
(a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a* 
b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))))/(a^3*f*cos(f*x + e)^ 
2 + a^2*b*f)]
 

Sympy [F]

\[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\tan ^{2}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(tan(f*x+e)**2/(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral(tan(e + f*x)**2/(a + b*sec(e + f*x)**2)**(3/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2005 vs. \(2 (63) = 126\).

Time = 0.35 (sec) , antiderivative size = 2005, normalized size of antiderivative = 28.24 \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

1/2*(2*a*sin(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e) 
, a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))^3 + 2*a*cos(1/2* 
arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4 
*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))*sin(2*f*x + 2*e) + 2*(a*cos(1/2*a 
rctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4* 
e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a))^2 - a*cos(2*f*x + 2*e))*sin(1/2*ar 
ctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4*e 
) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a)) - (a^2*cos(4*f*x + 4*e)^2 + a^2*sin 
(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*b + 4*b^2)*cos(2*f*x + 2*e)^2 + 4*(a^2 + 2* 
a*b)*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 4*(a^2 + 4*a*b + 4*b^2)*sin(2*f*x 
 + 2*e)^2 + a^2 + 2*(a^2 + 2*(a^2 + 2*a*b)*cos(2*f*x + 2*e))*cos(4*f*x + 4 
*e) + 4*(a^2 + 2*a*b)*cos(2*f*x + 2*e))^(1/4)*((cos(1/2*arctan2(a*sin(4*f* 
x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)* 
cos(2*f*x + 2*e) + a))^2 + sin(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b 
)*sin(2*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a) 
)^2)*arctan2(2*a*sin(2*f*x + 2*e) + 2*(a^2*cos(4*f*x + 4*e)^2 + a^2*sin(4* 
f*x + 4*e)^2 + 4*(a^2 + 4*a*b + 4*b^2)*cos(2*f*x + 2*e)^2 + 4*(a^2 + 2*a*b 
)*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 4*(a^2 + 4*a*b + 4*b^2)*sin(2*f*x + 
2*e)^2 + a^2 + 2*(a^2 + 2*(a^2 + 2*a*b)*cos(2*f*x + 2*e))*cos(4*f*x + 4*e) 
 + 4*(a^2 + 2*a*b)*cos(2*f*x + 2*e))^(1/4)*sqrt(a)*sin(1/2*arctan2(a*si...
 

Giac [F]

\[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{2}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate(tan(f*x + e)^2/(b*sec(f*x + e)^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^2}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \] Input:

int(tan(e + f*x)^2/(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int(tan(e + f*x)^2/(a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \tan \left (f x +e \right )^{2}}{\sec \left (f x +e \right )^{4} b^{2}+2 \sec \left (f x +e \right )^{2} a b +a^{2}}d x \] Input:

int(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*tan(e + f*x)**2)/(sec(e + f*x)**4*b**2 + 
2*sec(e + f*x)**2*a*b + a**2),x)