\(\int \frac {\cot ^6(e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [427]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 241 \[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{a^{3/2} f}-\frac {b \cot ^5(e+f x)}{a (a+b) f \sqrt {a+b+b \tan ^2(e+f x)}}-\frac {\left (15 a^3+55 a^2 b+73 a b^2-15 b^3\right ) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 a (a+b)^4 f}+\frac {\left (5 a^2+14 a b-15 b^2\right ) \cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{15 a (a+b)^3 f}-\frac {(a-5 b) \cot ^5(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{5 a (a+b)^2 f} \] Output:

-arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(3/2)/f-b*cot(f*x 
+e)^5/a/(a+b)/f/(a+b+b*tan(f*x+e)^2)^(1/2)-1/15*(15*a^3+55*a^2*b+73*a*b^2- 
15*b^3)*cot(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/a/(a+b)^4/f+1/15*(5*a^2+14*a 
*b-15*b^2)*cot(f*x+e)^3*(a+b+b*tan(f*x+e)^2)^(1/2)/a/(a+b)^3/f-1/5*(a-5*b) 
*cot(f*x+e)^5*(a+b+b*tan(f*x+e)^2)^(1/2)/a/(a+b)^2/f
 

Mathematica [A] (verified)

Time = 4.24 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.98 \[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right ) (a+2 b+a \cos (2 e+2 f x))^{3/2} \sec ^3(e+f x)}{2 \sqrt {2} a^{3/2} f \left (a+b \sec ^2(e+f x)\right )^{3/2}}+\frac {(a+2 b+a \cos (2 (e+f x)))^2 \left (\frac {30 b^4}{a (a+2 b+a \cos (2 (e+f x)))}-\left (23 a^2+80 a b+90 b^2\right ) \csc ^2(e+f x)+(a+b) (11 a+20 b) \csc ^4(e+f x)-3 (a+b)^2 \csc ^6(e+f x)\right ) \sec ^2(e+f x) \tan (e+f x)}{60 (a+b)^4 f \left (a+b \sec ^2(e+f x)\right )^{3/2}} \] Input:

Integrate[Cot[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

-1/2*(ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]]*(a + 2 
*b + a*Cos[2*e + 2*f*x])^(3/2)*Sec[e + f*x]^3)/(Sqrt[2]*a^(3/2)*f*(a + b*S 
ec[e + f*x]^2)^(3/2)) + ((a + 2*b + a*Cos[2*(e + f*x)])^2*((30*b^4)/(a*(a 
+ 2*b + a*Cos[2*(e + f*x)])) - (23*a^2 + 80*a*b + 90*b^2)*Csc[e + f*x]^2 + 
 (a + b)*(11*a + 20*b)*Csc[e + f*x]^4 - 3*(a + b)^2*Csc[e + f*x]^6)*Sec[e 
+ f*x]^2*Tan[e + f*x])/(60*(a + b)^4*f*(a + b*Sec[e + f*x]^2)^(3/2))
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 254, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4629, 2075, 374, 445, 445, 445, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\tan (e+f x)^6 \left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\cot ^6(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\cot ^6(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 374

\(\displaystyle \frac {\frac {\int \frac {\cot ^6(e+f x) \left (-6 b \tan ^2(e+f x)+a-5 b\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a (a+b)}-\frac {b \cot ^5(e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {-\frac {\int \frac {\cot ^4(e+f x) \left (5 a^2+14 b a-15 b^2+4 (a-5 b) b \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{5 (a+b)}-\frac {(a-5 b) \cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 (a+b)}}{a (a+b)}-\frac {b \cot ^5(e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {-\frac {-\frac {\int \frac {\cot ^2(e+f x) \left (15 a^3+55 b a^2+73 b^2 a-15 b^3+2 b \left (5 a^2+14 b a-15 b^2\right ) \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{3 (a+b)}-\frac {\left (5 a^2+14 a b-15 b^2\right ) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{5 (a+b)}-\frac {(a-5 b) \cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 (a+b)}}{a (a+b)}-\frac {b \cot ^5(e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {-\frac {-\frac {-\frac {\int \frac {15 (a+b)^4}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a+b}-\frac {\left (15 a^3+55 a^2 b+73 a b^2-15 b^3\right ) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}}{3 (a+b)}-\frac {\left (5 a^2+14 a b-15 b^2\right ) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{5 (a+b)}-\frac {(a-5 b) \cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 (a+b)}}{a (a+b)}-\frac {b \cot ^5(e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {-\frac {-\frac {-15 (a+b)^3 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\frac {\left (15 a^3+55 a^2 b+73 a b^2-15 b^3\right ) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}}{3 (a+b)}-\frac {\left (5 a^2+14 a b-15 b^2\right ) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{5 (a+b)}-\frac {(a-5 b) \cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 (a+b)}}{a (a+b)}-\frac {b \cot ^5(e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {-\frac {-\frac {-15 (a+b)^3 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}-\frac {\left (15 a^3+55 a^2 b+73 a b^2-15 b^3\right ) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}}{3 (a+b)}-\frac {\left (5 a^2+14 a b-15 b^2\right ) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}}{5 (a+b)}-\frac {(a-5 b) \cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 (a+b)}}{a (a+b)}-\frac {b \cot ^5(e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {-\frac {-\frac {\left (5 a^2+14 a b-15 b^2\right ) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{3 (a+b)}-\frac {-\frac {\left (15 a^3+55 a^2 b+73 a b^2-15 b^3\right ) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{a+b}-\frac {15 (a+b)^3 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a}}}{3 (a+b)}}{5 (a+b)}-\frac {(a-5 b) \cot ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{5 (a+b)}}{a (a+b)}-\frac {b \cot ^5(e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{f}\)

Input:

Int[Cot[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(-((b*Cot[e + f*x]^5)/(a*(a + b)*Sqrt[a + b + b*Tan[e + f*x]^2])) + (-1/5* 
((a - 5*b)*Cot[e + f*x]^5*Sqrt[a + b + b*Tan[e + f*x]^2])/(a + b) - (-1/3* 
((5*a^2 + 14*a*b - 15*b^2)*Cot[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/ 
(a + b) - ((-15*(a + b)^3*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan 
[e + f*x]^2]])/Sqrt[a] - ((15*a^3 + 55*a^2*b + 73*a*b^2 - 15*b^3)*Cot[e + 
f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(a + b))/(3*(a + b)))/(5*(a + b)))/(a 
*(a + b)))/f
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1160\) vs. \(2(221)=442\).

Time = 15.24 (sec) , antiderivative size = 1161, normalized size of antiderivative = 4.82

method result size
default \(\text {Expression too large to display}\) \(1161\)

Input:

int(cot(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/15/f/(a+b)^4/a/(-a)^(1/2)*(sin(f*x+e)^5*cos(f*x+e)^2*(15*cos(f*x+e)+15) 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^5+sin(f*x+e)^5*(60*cos(f*x+e)^3 
+60*cos(f*x+e)^2+15*cos(f*x+e)+15)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^( 
1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e 
)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a) 
*a^4*b+sin(f*x+e)^5*(90*cos(f*x+e)^3+90*cos(f*x+e)^2+60*cos(f*x+e)+60)*((b 
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^ 
2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+ 
cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^3*b^2+sin(f*x+e)^5*(60*cos(f*x+e)^3 
+60*cos(f*x+e)^2+90*cos(f*x+e)+90)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^( 
1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e 
)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a) 
*a^2*b^3+sin(f*x+e)^5*(15*cos(f*x+e)^3+15*cos(f*x+e)^2+60*cos(f*x+e)+60)*( 
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e 
)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/( 
1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a*b^4+sin(f*x+e)^5*(15*cos(f*x+e)+1 
5)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 698 vs. \(2 (221) = 442\).

Time = 6.57 (sec) , antiderivative size = 1517, normalized size of antiderivative = 6.29 \[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(cot(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[-1/120*(15*((a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*cos(f*x + e)^ 
6 + a^4*b + 4*a^3*b^2 + 6*a^2*b^3 + 4*a*b^4 + b^5 - (2*a^5 + 7*a^4*b + 8*a 
^3*b^2 + 2*a^2*b^3 - 2*a*b^4 - b^5)*cos(f*x + e)^4 + (a^5 + 2*a^4*b - 2*a^ 
3*b^2 - 8*a^2*b^3 - 7*a*b^4 - 2*b^5)*cos(f*x + e)^2)*sqrt(-a)*log(128*a^4* 
cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 
 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 
- 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f* 
x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2 
)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)* 
sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))*sin(f*x + e) + 8 
*((23*a^5 + 80*a^4*b + 90*a^3*b^2 + 15*a*b^4)*cos(f*x + e)^7 - (35*a^5 + 1 
06*a^4*b + 80*a^3*b^2 - 90*a^2*b^3 + 45*a*b^4)*cos(f*x + e)^5 + (15*a^5 + 
20*a^4*b - 56*a^3*b^2 - 160*a^2*b^3 + 45*a*b^4)*cos(f*x + e)^3 + (15*a^4*b 
 + 55*a^3*b^2 + 73*a^2*b^3 - 15*a*b^4)*cos(f*x + e))*sqrt((a*cos(f*x + e)^ 
2 + b)/cos(f*x + e)^2))/(((a^7 + 4*a^6*b + 6*a^5*b^2 + 4*a^4*b^3 + a^3*b^4 
)*f*cos(f*x + e)^6 - (2*a^7 + 7*a^6*b + 8*a^5*b^2 + 2*a^4*b^3 - 2*a^3*b^4 
- a^2*b^5)*f*cos(f*x + e)^4 + (a^7 + 2*a^6*b - 2*a^5*b^2 - 8*a^4*b^3 - 7*a 
^3*b^4 - 2*a^2*b^5)*f*cos(f*x + e)^2 + (a^6*b + 4*a^5*b^2 + 6*a^4*b^3 + 4* 
a^3*b^4 + a^2*b^5)*f)*sin(f*x + e)), 1/60*(15*((a^5 + 4*a^4*b + 6*a^3*b^2 
+ 4*a^2*b^3 + a*b^4)*cos(f*x + e)^6 + a^4*b + 4*a^3*b^2 + 6*a^2*b^3 + 4...
 

Sympy [F]

\[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\cot ^{6}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cot(f*x+e)**6/(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral(cot(e + f*x)**6/(a + b*sec(e + f*x)**2)**(3/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cot(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\cot \left (f x + e\right )^{6}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cot(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate(cot(f*x + e)^6/(b*sec(f*x + e)^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\text {Hanged} \] Input:

int(cot(e + f*x)^6/(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

\text{Hanged}
 

Reduce [F]

\[ \int \frac {\cot ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right )^{6}}{\sec \left (f x +e \right )^{4} b^{2}+2 \sec \left (f x +e \right )^{2} a b +a^{2}}d x \] Input:

int(cot(f*x+e)^6/(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*cot(e + f*x)**6)/(sec(e + f*x)**4*b**2 + 
2*sec(e + f*x)**2*a*b + a**2),x)