\(\int \frac {\tan ^6(e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\) [434]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 157 \[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{a^{5/2} f}+\frac {\text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{b^{5/2} f}-\frac {(a+b) \tan ^3(e+f x)}{3 a b f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {\left (\frac {1}{a^2}-\frac {1}{b^2}\right ) \tan (e+f x)}{f \sqrt {a+b+b \tan ^2(e+f x)}} \] Output:

-arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(5/2)/f+arctanh(b 
^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(5/2)/f-1/3*(a+b)*tan(f*x+ 
e)^3/a/b/f/(a+b+b*tan(f*x+e)^2)^(3/2)+(1/a^2-1/b^2)*tan(f*x+e)/f/(a+b+b*ta 
n(f*x+e)^2)^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(316\) vs. \(2(157)=314\).

Time = 9.48 (sec) , antiderivative size = 316, normalized size of antiderivative = 2.01 \[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=-\frac {\left (\frac {b^2 \arctan \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )}{\sqrt {a}}-\frac {a^2 \text {arctanh}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )}{\sqrt {b}}\right ) (a+2 b+a \cos (2 e+2 f x))^{5/2} \sec ^5(e+f x)}{4 \sqrt {2} a^2 b^2 f \left (a+b \sec ^2(e+f x)\right )^{5/2}}+\frac {(a+2 b+a \cos (2 e+2 f x))^3 \sec ^5(e+f x) \left (\frac {-a^2 \sin (e+f x)-2 a b \sin (e+f x)-b^2 \sin (e+f x)}{6 a^2 b f (a+2 b+a \cos (2 e+2 f x))^2}+\frac {-3 a^2 \sin (e+f x)+a b \sin (e+f x)+4 b^2 \sin (e+f x)}{12 a^2 b^2 f (a+2 b+a \cos (2 e+2 f x))}\right )}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \] Input:

Integrate[Tan[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(5/2),x]
 

Output:

-1/4*(((b^2*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]]) 
/Sqrt[a] - (a^2*ArcTanh[(Sqrt[b]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x] 
^2]])/Sqrt[b])*(a + 2*b + a*Cos[2*e + 2*f*x])^(5/2)*Sec[e + f*x]^5)/(Sqrt[ 
2]*a^2*b^2*f*(a + b*Sec[e + f*x]^2)^(5/2)) + ((a + 2*b + a*Cos[2*e + 2*f*x 
])^3*Sec[e + f*x]^5*((-(a^2*Sin[e + f*x]) - 2*a*b*Sin[e + f*x] - b^2*Sin[e 
 + f*x])/(6*a^2*b*f*(a + 2*b + a*Cos[2*e + 2*f*x])^2) + (-3*a^2*Sin[e + f* 
x] + a*b*Sin[e + f*x] + 4*b^2*Sin[e + f*x])/(12*a^2*b^2*f*(a + 2*b + a*Cos 
[2*e + 2*f*x]))))/(a + b*Sec[e + f*x]^2)^(5/2)
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 178, normalized size of antiderivative = 1.13, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4629, 2075, 372, 27, 440, 25, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^6}{\left (a+b \sec (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\tan ^6(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\tan ^6(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\frac {\int \frac {3 \tan ^2(e+f x) \left (a \tan ^2(e+f x)+a+b\right )}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{3 a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\tan ^2(e+f x) \left (a \tan ^2(e+f x)+a+b\right )}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 440

\(\displaystyle \frac {\frac {-\frac {\int -\frac {\tan ^2(e+f x) a^2+a^2-b^2}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a b}-\frac {\left (a^2-b^2\right ) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\frac {\int \frac {\tan ^2(e+f x) a^2+a^2-b^2}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a b}-\frac {\left (a^2-b^2\right ) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {\frac {a^2 \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-b^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a b}-\frac {\left (a^2-b^2\right ) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {\frac {a^2 \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}-b^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a b}-\frac {\left (a^2-b^2\right ) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\frac {\frac {a^2 \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-b^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a b}-\frac {\left (a^2-b^2\right ) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\frac {\frac {a^2 \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-b^2 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a b}-\frac {\left (a^2-b^2\right ) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\frac {\frac {a^2 \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-\frac {b^2 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a}}}{a b}-\frac {\left (a^2-b^2\right ) \tan (e+f x)}{a b \sqrt {a+b \tan ^2(e+f x)+b}}}{a b}-\frac {(a+b) \tan ^3(e+f x)}{3 a b \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}}{f}\)

Input:

Int[Tan[e + f*x]^6/(a + b*Sec[e + f*x]^2)^(5/2),x]
 

Output:

(-1/3*((a + b)*Tan[e + f*x]^3)/(a*b*(a + b + b*Tan[e + f*x]^2)^(3/2)) + (( 
-((b^2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/Sqrt 
[a]) + (a^2*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]] 
)/Sqrt[b])/(a*b) - ((a^2 - b^2)*Tan[e + f*x])/(a*b*Sqrt[a + b + b*Tan[e + 
f*x]^2]))/(a*b))/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 440
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[g*(b*e - a*f)*(g*x)^(m - 1)*(a + 
 b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] - Simp[ 
g^2/(2*b*(b*c - a*d)*(p + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + 
d*x^2)^q*Simp[c*(b*e - a*f)*(m - 1) + (d*(b*e - a*f)*(m + 2*q + 1) - b*2*(c 
*f - d*e)*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, q}, x] && 
 LtQ[p, -1] && GtQ[m, 1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1422\) vs. \(2(139)=278\).

Time = 5.41 (sec) , antiderivative size = 1423, normalized size of antiderivative = 9.06

method result size
default \(\text {Expression too large to display}\) \(1423\)

Input:

int(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/6/f/b^(7/2)/(-a)^(1/2)/a^2*(cos(f*x+e)^4*(3*cos(f*x+e)+3)*(-a)^(1/2)*((b 
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^4*b*ln(4*(-b^(1/2)*((b+a*cos(f* 
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+sin(f*x+e)*a-b^(1/2)*((b+a*cos( 
f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-a-b)/(sin(f*x+e)-1))+cos(f*x+e)^2*(6*cos 
(f*x+e)+6)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^3*b^2* 
ln(4*(-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+sin( 
f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-a-b)/(sin(f*x 
+e)-1))+(3*cos(f*x+e)+3)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^ 
(1/2)*a^2*b^3*ln(4*(-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*c 
os(f*x+e)+sin(f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2) 
-a-b)/(sin(f*x+e)-1))+cos(f*x+e)^4*(3*cos(f*x+e)+3)*(-a)^(1/2)*((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^4*b*ln(-4*(-b^(1/2)*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+sin(f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^ 
2)/(1+cos(f*x+e))^2)^(1/2)+a+b)/(sin(f*x+e)+1))+cos(f*x+e)^2*(6*cos(f*x+e) 
+6)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^3*b^2*ln(-4*( 
-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+sin(f*x+e) 
*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+a+b)/(sin(f*x+e)+1) 
)+(3*cos(f*x+e)+3)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)* 
a^2*b^3*ln(-4*(-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f* 
x+e)+sin(f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+a...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 433 vs. \(2 (139) = 278\).

Time = 1.86 (sec) , antiderivative size = 2035, normalized size of antiderivative = 12.96 \[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")
 

Output:

[-1/24*(3*(a^2*b^3*cos(f*x + e)^4 + 2*a*b^4*cos(f*x + e)^2 + b^5)*sqrt(-a) 
*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 
 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28 
*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*( 
16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^ 
2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + 
e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 6 
*(a^5*cos(f*x + e)^4 + 2*a^4*b*cos(f*x + e)^2 + a^3*b^2)*sqrt(b)*log(((a^2 
 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b) 
*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/co 
s(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 8*((3*a^4*b - a^3*b^ 
2 - 4*a^2*b^3)*cos(f*x + e)^3 + (4*a^3*b^2 + a^2*b^3 - 3*a*b^4)*cos(f*x + 
e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a^5*b^3*f*c 
os(f*x + e)^4 + 2*a^4*b^4*f*cos(f*x + e)^2 + a^3*b^5*f), 1/24*(12*(a^5*cos 
(f*x + e)^4 + 2*a^4*b*cos(f*x + e)^2 + a^3*b^2)*sqrt(-b)*arctan(-1/2*((a - 
 b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b 
)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) - 3*(a^2*b^3* 
cos(f*x + e)^4 + 2*a*b^4*cos(f*x + e)^2 + b^5)*sqrt(-a)*log(128*a^4*cos(f* 
x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2 
*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 3...
 

Sympy [F]

\[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\tan ^{6}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(tan(f*x+e)**6/(a+b*sec(f*x+e)**2)**(5/2),x)
 

Output:

Integral(tan(e + f*x)**6/(a + b*sec(e + f*x)**2)**(5/2), x)
 

Maxima [F]

\[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{6}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")
 

Output:

integrate(tan(f*x + e)^6/(b*sec(f*x + e)^2 + a)^(5/2), x)
 

Giac [F]

\[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{6}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")
 

Output:

integrate(tan(f*x + e)^6/(b*sec(f*x + e)^2 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^6}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{5/2}} \,d x \] Input:

int(tan(e + f*x)^6/(a + b/cos(e + f*x)^2)^(5/2),x)
 

Output:

int(tan(e + f*x)^6/(a + b/cos(e + f*x)^2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^6(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \tan \left (f x +e \right )^{6}}{\sec \left (f x +e \right )^{6} b^{3}+3 \sec \left (f x +e \right )^{4} a \,b^{2}+3 \sec \left (f x +e \right )^{2} a^{2} b +a^{3}}d x \] Input:

int(tan(f*x+e)^6/(a+b*sec(f*x+e)^2)^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*tan(e + f*x)**6)/(sec(e + f*x)**6*b**3 + 
3*sec(e + f*x)**4*a*b**2 + 3*sec(e + f*x)**2*a**2*b + a**3),x)