\(\int \frac {\tan ^2(e+f x)}{(a+b \sec ^2(e+f x))^{5/2}} \, dx\) [436]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 119 \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=-\frac {\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{a^{5/2} f}+\frac {\tan (e+f x)}{3 a f \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}+\frac {(2 a+3 b) \tan (e+f x)}{3 a^2 (a+b) f \sqrt {a+b+b \tan ^2(e+f x)}} \] Output:

-arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(5/2)/f+1/3*tan(f 
*x+e)/a/f/(a+b+b*tan(f*x+e)^2)^(3/2)+1/3*(2*a+3*b)*tan(f*x+e)/a^2/(a+b)/f/ 
(a+b+b*tan(f*x+e)^2)^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(410\) vs. \(2(119)=238\).

Time = 3.16 (sec) , antiderivative size = 410, normalized size of antiderivative = 3.45 \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\frac {(a+2 b+a \cos (2 (e+f x)))^{5/2} \sec ^4(e+f x) \left (-\frac {\sqrt {2} \csc (e+f x) \sec (e+f x) \left (\frac {\sin ^2(e+f x)}{a+b}+\frac {(a+2 b+a \cos (2 (e+f x))) \sin ^2(e+f x)}{(a+b)^2}-\frac {12 \sin ^4(e+f x)}{a+b}+\frac {16 \left (a+b-a \sin ^2(e+f x)\right ) \left (1-\frac {a \sin ^2(e+f x)}{a+b}\right ) \left (-\frac {6 a (a+b) \sin ^2(e+f x)}{a+2 b+a \cos (2 (e+f x))}+\frac {a^2 (a+b) \sin ^4(e+f x)}{\left (a+b-a \sin ^2(e+f x)\right )^2}+\frac {3 \sqrt {a} \sqrt {a+b} \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) \sin (e+f x)}{\sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}}\right )}{a^3}\right )}{\left (a+b-a \sin ^2(e+f x)\right )^{3/2}}+\frac {8 (2 a+3 b+a \cos (2 (e+f x))) \tan (e+f x)}{(a+b)^2 (a+2 b+a \cos (2 (e+f x)))^{3/2}}-\frac {4 (b+(3 a+2 b) \cos (2 (e+f x))) \tan (e+f x)}{(a+b)^2 (a+2 b+a \cos (2 (e+f x)))^{3/2}}\right )}{384 f \left (a+b \sec ^2(e+f x)\right )^{5/2}} \] Input:

Integrate[Tan[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(5/2),x]
 

Output:

((a + 2*b + a*Cos[2*(e + f*x)])^(5/2)*Sec[e + f*x]^4*(-((Sqrt[2]*Csc[e + f 
*x]*Sec[e + f*x]*(Sin[e + f*x]^2/(a + b) + ((a + 2*b + a*Cos[2*(e + f*x)]) 
*Sin[e + f*x]^2)/(a + b)^2 - (12*Sin[e + f*x]^4)/(a + b) + (16*(a + b - a* 
Sin[e + f*x]^2)*(1 - (a*Sin[e + f*x]^2)/(a + b))*((-6*a*(a + b)*Sin[e + f* 
x]^2)/(a + 2*b + a*Cos[2*(e + f*x)]) + (a^2*(a + b)*Sin[e + f*x]^4)/(a + b 
 - a*Sin[e + f*x]^2)^2 + (3*Sqrt[a]*Sqrt[a + b]*ArcSin[(Sqrt[a]*Sin[e + f* 
x])/Sqrt[a + b]]*Sin[e + f*x])/Sqrt[(a + b - a*Sin[e + f*x]^2)/(a + b)]))/ 
a^3))/(a + b - a*Sin[e + f*x]^2)^(3/2)) + (8*(2*a + 3*b + a*Cos[2*(e + f*x 
)])*Tan[e + f*x])/((a + b)^2*(a + 2*b + a*Cos[2*(e + f*x)])^(3/2)) - (4*(b 
 + (3*a + 2*b)*Cos[2*(e + f*x)])*Tan[e + f*x])/((a + b)^2*(a + 2*b + a*Cos 
[2*(e + f*x)])^(3/2))))/(384*f*(a + b*Sec[e + f*x]^2)^(5/2))
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4629, 2075, 373, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (e+f x)^2}{\left (a+b \sec (e+f x)^2\right )^{5/2}}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{5/2}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 373

\(\displaystyle \frac {\frac {\tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\int \frac {1-2 \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}d\tan (e+f x)}{3 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {\int \frac {3 (a+b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a (a+b)}-\frac {(2 a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {3 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a}-\frac {(2 a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {3 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{a}-\frac {(2 a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\tan (e+f x)}{3 a \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}-\frac {\frac {3 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{a^{3/2}}-\frac {(2 a+3 b) \tan (e+f x)}{a (a+b) \sqrt {a+b \tan ^2(e+f x)+b}}}{3 a}}{f}\)

Input:

Int[Tan[e + f*x]^2/(a + b*Sec[e + f*x]^2)^(5/2),x]
 

Output:

(Tan[e + f*x]/(3*a*(a + b + b*Tan[e + f*x]^2)^(3/2)) - ((3*ArcTan[(Sqrt[a] 
*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/a^(3/2) - ((2*a + 3*b)*Tan 
[e + f*x])/(a*(a + b)*Sqrt[a + b + b*Tan[e + f*x]^2]))/(3*a))/f
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 373
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 
1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1))   Int[(e 
*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 
 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 
 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b, c, d, e, 
m, 2, p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(691\) vs. \(2(105)=210\).

Time = 3.88 (sec) , antiderivative size = 692, normalized size of antiderivative = 5.82

method result size
default \(\frac {-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a^{3} \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (3+3 \sec \left (f x +e \right )\right )}{3}-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a^{2} b \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (3+3 \sec \left (f x +e \right )+6 \sec \left (f x +e \right )^{2}+6 \sec \left (f x +e \right )^{3}\right )}{3}-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a \,b^{2} \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (6 \sec \left (f x +e \right )^{2}+6 \sec \left (f x +e \right )^{3}+3 \sec \left (f x +e \right )^{4}+3 \sec \left (f x +e \right )^{5}\right )}{3}-\frac {\sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{3} \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \left (3 \sec \left (f x +e \right )^{4}+3 \sec \left (f x +e \right )^{5}\right )}{3}+\sqrt {-a}\, a^{3} \tan \left (f x +e \right )-\frac {\sqrt {-a}\, a^{2} b \left (-4 \tan \left (f x +e \right )-5 \sec \left (f x +e \right )^{2} \tan \left (f x +e \right )\right )}{3}-\frac {\left (-7 \cos \left (f x +e \right )^{2}-2\right ) \sqrt {-a}\, a \,b^{2} \tan \left (f x +e \right ) \sec \left (f x +e \right )^{4}}{3}+\sqrt {-a}\, b^{3} \tan \left (f x +e \right ) \sec \left (f x +e \right )^{4}}{f \left (a +b \right ) a^{2} \sqrt {-a}\, \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {5}{2}}}\) \(692\)

Input:

int(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/f*(-1/3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^3*ln(4*(-a)^(1/2)* 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a* 
cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*(3+3*sec(f*x+e))-1/3 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2*b*ln(4*(-a)^(1/2)*((b+a*c 
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*(3+3*sec(f*x+e)+6*sec(f*x+e 
)^2+6*sec(f*x+e)^3)-1/3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b^2* 
ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*( 
-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*(6*s 
ec(f*x+e)^2+6*sec(f*x+e)^3+3*sec(f*x+e)^4+3*sec(f*x+e)^5)-1/3*((b+a*cos(f* 
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f 
*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*(3*sec(f*x+e)^4+3*sec(f*x+e)^5)+(-a)^(1/2) 
*a^3*tan(f*x+e)-1/3*(-a)^(1/2)*a^2*b*(-4*tan(f*x+e)-5*sec(f*x+e)^2*tan(f*x 
+e))-1/3*(-7*cos(f*x+e)^2-2)*(-a)^(1/2)*a*b^2*tan(f*x+e)*sec(f*x+e)^4+(-a) 
^(1/2)*b^3*tan(f*x+e)*sec(f*x+e)^4)/(a+b)/a^2/(-a)^(1/2)/(a+b*sec(f*x+e)^2 
)^(5/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 326 vs. \(2 (105) = 210\).

Time = 0.65 (sec) , antiderivative size = 773, normalized size of antiderivative = 6.50 \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx =\text {Too large to display} \] Input:

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="fricas")
 

Output:

[-1/24*(3*((a^3 + a^2*b)*cos(f*x + e)^4 + a*b^2 + b^3 + 2*(a^2*b + a*b^2)* 
cos(f*x + e)^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*co 
s(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28 
*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b 
^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + 
 e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7 
*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + 
 e)^2)*sin(f*x + e)) - 8*((3*a^3 + 4*a^2*b)*cos(f*x + e)^3 + (2*a^2*b + 3* 
a*b^2)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + 
 e))/((a^6 + a^5*b)*f*cos(f*x + e)^4 + 2*(a^5*b + a^4*b^2)*f*cos(f*x + e)^ 
2 + (a^4*b^2 + a^3*b^3)*f), 1/12*(3*((a^3 + a^2*b)*cos(f*x + e)^4 + a*b^2 
+ b^3 + 2*(a^2*b + a*b^2)*cos(f*x + e)^2)*sqrt(a)*arctan(1/4*(8*a^2*cos(f* 
x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e) 
)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e) 
^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) + 4*(( 
3*a^3 + 4*a^2*b)*cos(f*x + e)^3 + (2*a^2*b + 3*a*b^2)*cos(f*x + e))*sqrt(( 
a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/((a^6 + a^5*b)*f*cos(f 
*x + e)^4 + 2*(a^5*b + a^4*b^2)*f*cos(f*x + e)^2 + (a^4*b^2 + a^3*b^3)*f)]
 

Sympy [F]

\[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\tan ^{2}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(tan(f*x+e)**2/(a+b*sec(f*x+e)**2)**(5/2),x)
 

Output:

Integral(tan(e + f*x)**2/(a + b*sec(e + f*x)**2)**(5/2), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int { \frac {\tan \left (f x + e\right )^{2}}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(5/2),x, algorithm="giac")
 

Output:

integrate(tan(f*x + e)^2/(b*sec(f*x + e)^2 + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {{\mathrm {tan}\left (e+f\,x\right )}^2}{{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{5/2}} \,d x \] Input:

int(tan(e + f*x)^2/(a + b/cos(e + f*x)^2)^(5/2),x)
 

Output:

int(tan(e + f*x)^2/(a + b/cos(e + f*x)^2)^(5/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^2(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{5/2}} \, dx=\int \frac {\sqrt {\sec \left (f x +e \right )^{2} b +a}\, \tan \left (f x +e \right )^{2}}{\sec \left (f x +e \right )^{6} b^{3}+3 \sec \left (f x +e \right )^{4} a \,b^{2}+3 \sec \left (f x +e \right )^{2} a^{2} b +a^{3}}d x \] Input:

int(tan(f*x+e)^2/(a+b*sec(f*x+e)^2)^(5/2),x)
 

Output:

int((sqrt(sec(e + f*x)**2*b + a)*tan(e + f*x)**2)/(sec(e + f*x)**6*b**3 + 
3*sec(e + f*x)**4*a*b**2 + 3*sec(e + f*x)**2*a**2*b + a**3),x)