\(\int (a+b \sec ^2(e+f x))^p \tan ^4(e+f x) \, dx\) [447]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 90 \[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\frac {\operatorname {AppellF1}\left (\frac {5}{2},1,-p,\frac {7}{2},-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a+b}\right ) \tan ^5(e+f x) \left (a+b+b \tan ^2(e+f x)\right )^p \left (\frac {a+b+b \tan ^2(e+f x)}{a+b}\right )^{-p}}{5 f} \] Output:

1/5*AppellF1(5/2,1,-p,7/2,-tan(f*x+e)^2,-b*tan(f*x+e)^2/(a+b))*tan(f*x+e)^ 
5*(a+b+b*tan(f*x+e)^2)^p/f/(((a+b+b*tan(f*x+e)^2)/(a+b))^p)
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2777\) vs. \(2(90)=180\).

Time = 16.13 (sec) , antiderivative size = 2777, normalized size of antiderivative = 30.86 \[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\text {Result too large to show} \] Input:

Integrate[(a + b*Sec[e + f*x]^2)^p*Tan[e + f*x]^4,x]
 

Output:

((a + 2*b + a*Cos[2*(e + f*x)])^p*(Sec[e + f*x]^2)^p*(a + b*Sec[e + f*x]^2 
)^p*Tan[e + f*x]^5*((9*(a + b)*AppellF1[1/2, -p, 1, 3/2, -((b*Tan[e + f*x] 
^2)/(a + b)), -Tan[e + f*x]^2]*Cos[e + f*x]^2)/(3*(a + b)*AppellF1[1/2, -p 
, 1, 3/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2] + 2*(b*p*AppellF 
1[3/2, 1 - p, 1, 5/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2] - (a 
 + b)*AppellF1[3/2, -p, 2, 5/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f* 
x]^2])*Tan[e + f*x]^2) + (-3*Hypergeometric2F1[1/2, -p, 3/2, -((b*Tan[e + 
f*x]^2)/(a + b))] + Hypergeometric2F1[3/2, -p, 5/2, -((b*Tan[e + f*x]^2)/( 
a + b))]*Tan[e + f*x]^2)/(1 + (b*Tan[e + f*x]^2)/(a + b))^p))/(3*f*(((a + 
2*b + a*Cos[2*(e + f*x)])^p*(Sec[e + f*x]^2)^(1 + p)*((9*(a + b)*AppellF1[ 
1/2, -p, 1, 3/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2]*Cos[e + f 
*x]^2)/(3*(a + b)*AppellF1[1/2, -p, 1, 3/2, -((b*Tan[e + f*x]^2)/(a + b)), 
 -Tan[e + f*x]^2] + 2*(b*p*AppellF1[3/2, 1 - p, 1, 5/2, -((b*Tan[e + f*x]^ 
2)/(a + b)), -Tan[e + f*x]^2] - (a + b)*AppellF1[3/2, -p, 2, 5/2, -((b*Tan 
[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2])*Tan[e + f*x]^2) + (-3*Hypergeomet 
ric2F1[1/2, -p, 3/2, -((b*Tan[e + f*x]^2)/(a + b))] + Hypergeometric2F1[3/ 
2, -p, 5/2, -((b*Tan[e + f*x]^2)/(a + b))]*Tan[e + f*x]^2)/(1 + (b*Tan[e + 
 f*x]^2)/(a + b))^p))/3 - (2*a*p*(a + 2*b + a*Cos[2*(e + f*x)])^(-1 + p)*( 
Sec[e + f*x]^2)^p*Sin[2*(e + f*x)]*Tan[e + f*x]*((9*(a + b)*AppellF1[1/2, 
-p, 1, 3/2, -((b*Tan[e + f*x]^2)/(a + b)), -Tan[e + f*x]^2]*Cos[e + f*x...
 

Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.98, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4629, 2075, 395, 394}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^p \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (e+f x)^4 \left (a+b \sec (e+f x)^2\right )^pdx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^p}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x) \left (b \tan ^2(e+f x)+a+b\right )^p}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 395

\(\displaystyle \frac {\left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \int \frac {\tan ^4(e+f x) \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^p}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 394

\(\displaystyle \frac {\tan ^5(e+f x) \left (a+b \tan ^2(e+f x)+b\right )^p \left (\frac {b \tan ^2(e+f x)}{a+b}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {5}{2},1,-p,\frac {7}{2},-\tan ^2(e+f x),-\frac {b \tan ^2(e+f x)}{a+b}\right )}{5 f}\)

Input:

Int[(a + b*Sec[e + f*x]^2)^p*Tan[e + f*x]^4,x]
 

Output:

(AppellF1[5/2, 1, -p, 7/2, -Tan[e + f*x]^2, -((b*Tan[e + f*x]^2)/(a + b))] 
*Tan[e + f*x]^5*(a + b + b*Tan[e + f*x]^2)^p)/(5*f*(1 + (b*Tan[e + f*x]^2) 
/(a + b))^p)
 

Defintions of rubi rules used

rule 394
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[a^p*c^q*((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/2 
, -p, -q, 1 + (m + 1)/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; FreeQ[{a, b, c, 
 d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 1] && (Int 
egerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 395
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^ 
FracPart[p])   Int[(e*x)^m*(1 + b*(x^2/a))^p*(c + d*x^2)^q, x], x] /; FreeQ 
[{a, b, c, d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 
1] &&  !(IntegerQ[p] || GtQ[a, 0])
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [F]

\[\int \left (a +b \sec \left (f x +e \right )^{2}\right )^{p} \tan \left (f x +e \right )^{4}d x\]

Input:

int((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^4,x)
 

Output:

int((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^4,x)
 

Fricas [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \tan \left (f x + e\right )^{4} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^4,x, algorithm="fricas")
 

Output:

integral((b*sec(f*x + e)^2 + a)^p*tan(f*x + e)^4, x)
 

Sympy [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\text {Timed out} \] Input:

integrate((a+b*sec(f*x+e)**2)**p*tan(f*x+e)**4,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{p} \tan \left (f x + e\right )^{4} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^4,x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^p*tan(f*x + e)^4, x)
 

Giac [F(-2)]

Exception generated. \[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^4,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{1,[0,1,2,0]%%%}+%%%{-1,[0,1,0,0]%%%} / %%%{1,[0,0,0,1]%%%} 
 Error: B
 

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\int {\mathrm {tan}\left (e+f\,x\right )}^4\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^p \,d x \] Input:

int(tan(e + f*x)^4*(a + b/cos(e + f*x)^2)^p,x)
 

Output:

int(tan(e + f*x)^4*(a + b/cos(e + f*x)^2)^p, x)
 

Reduce [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^p \tan ^4(e+f x) \, dx=\int \left (\sec \left (f x +e \right )^{2} b +a \right )^{p} \tan \left (f x +e \right )^{4}d x \] Input:

int((a+b*sec(f*x+e)^2)^p*tan(f*x+e)^4,x)
 

Output:

int((sec(e + f*x)**2*b + a)**p*tan(e + f*x)**4,x)