\(\int \frac {\csc ^3(e+f x)}{(a+b \sec ^2(e+f x))^2} \, dx\) [45]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 147 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {(3 a-b) \sqrt {b} \arctan \left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {b}}\right )}{2 \sqrt {a} (a+b)^3 f}-\frac {(a-3 b) \text {arctanh}(\cos (e+f x))}{2 (a+b)^3 f}+\frac {(a-b) \cos (e+f x)}{2 (a+b)^2 f \left (b+a \cos ^2(e+f x)\right )}-\frac {\cot (e+f x) \csc (e+f x)}{2 (a+b) f \left (b+a \cos ^2(e+f x)\right )} \] Output:

1/2*(3*a-b)*b^(1/2)*arctan(a^(1/2)*cos(f*x+e)/b^(1/2))/a^(1/2)/(a+b)^3/f-1 
/2*(a-3*b)*arctanh(cos(f*x+e))/(a+b)^3/f+1/2*(a-b)*cos(f*x+e)/(a+b)^2/f/(b 
+a*cos(f*x+e)^2)-1/2*cot(f*x+e)*csc(f*x+e)/(a+b)/f/(b+a*cos(f*x+e)^2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 2.20 (sec) , antiderivative size = 468, normalized size of antiderivative = 3.18 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\frac {(a+2 b+a \cos (2 (e+f x))) \sec ^3(e+f x) \left (-8 b (a+b)-\frac {4 \sqrt {b} (-3 a+b) \arctan \left (\frac {\left (-\sqrt {a}-i \sqrt {a+b} \sqrt {(\cos (e)-i \sin (e))^2}\right ) \sin (e) \tan \left (\frac {f x}{2}\right )+\cos (e) \left (\sqrt {a}-\sqrt {a+b} \sqrt {(\cos (e)-i \sin (e))^2} \tan \left (\frac {f x}{2}\right )\right )}{\sqrt {b}}\right ) (a+2 b+a \cos (2 (e+f x))) \sec (e+f x)}{\sqrt {a}}-\frac {4 \sqrt {b} (-3 a+b) \arctan \left (\frac {\left (-\sqrt {a}+i \sqrt {a+b} \sqrt {(\cos (e)-i \sin (e))^2}\right ) \sin (e) \tan \left (\frac {f x}{2}\right )+\cos (e) \left (\sqrt {a}+\sqrt {a+b} \sqrt {(\cos (e)-i \sin (e))^2} \tan \left (\frac {f x}{2}\right )\right )}{\sqrt {b}}\right ) (a+2 b+a \cos (2 (e+f x))) \sec (e+f x)}{\sqrt {a}}-(a+b) (a+2 b+a \cos (2 (e+f x))) \csc ^2\left (\frac {1}{2} (e+f x)\right ) \sec (e+f x)-4 (a-3 b) (a+2 b+a \cos (2 (e+f x))) \log \left (\cos \left (\frac {1}{2} (e+f x)\right )\right ) \sec (e+f x)+4 (a-3 b) (a+2 b+a \cos (2 (e+f x))) \log \left (\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sec (e+f x)+(a+b) (a+2 b+a \cos (2 (e+f x))) \sec ^2\left (\frac {1}{2} (e+f x)\right ) \sec (e+f x)\right )}{32 (a+b)^3 f \left (a+b \sec ^2(e+f x)\right )^2} \] Input:

Integrate[Csc[e + f*x]^3/(a + b*Sec[e + f*x]^2)^2,x]
 

Output:

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(-8*b*(a + b) - (4*Sqrt[b]* 
(-3*a + b)*ArcTan[((-Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cos[e] - I*Sin[e])^2])* 
Sin[e]*Tan[(f*x)/2] + Cos[e]*(Sqrt[a] - Sqrt[a + b]*Sqrt[(Cos[e] - I*Sin[e 
])^2]*Tan[(f*x)/2]))/Sqrt[b]]*(a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]) 
/Sqrt[a] - (4*Sqrt[b]*(-3*a + b)*ArcTan[((-Sqrt[a] + I*Sqrt[a + b]*Sqrt[(C 
os[e] - I*Sin[e])^2])*Sin[e]*Tan[(f*x)/2] + Cos[e]*(Sqrt[a] + Sqrt[a + b]* 
Sqrt[(Cos[e] - I*Sin[e])^2]*Tan[(f*x)/2]))/Sqrt[b]]*(a + 2*b + a*Cos[2*(e 
+ f*x)])*Sec[e + f*x])/Sqrt[a] - (a + b)*(a + 2*b + a*Cos[2*(e + f*x)])*Cs 
c[(e + f*x)/2]^2*Sec[e + f*x] - 4*(a - 3*b)*(a + 2*b + a*Cos[2*(e + f*x)]) 
*Log[Cos[(e + f*x)/2]]*Sec[e + f*x] + 4*(a - 3*b)*(a + 2*b + a*Cos[2*(e + 
f*x)])*Log[Sin[(e + f*x)/2]]*Sec[e + f*x] + (a + b)*(a + 2*b + a*Cos[2*(e 
+ f*x)])*Sec[(e + f*x)/2]^2*Sec[e + f*x]))/(32*(a + b)^3*f*(a + b*Sec[e + 
f*x]^2)^2)
 

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4621, 372, 402, 27, 397, 218, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x)^3 \left (a+b \sec (e+f x)^2\right )^2}dx\)

\(\Big \downarrow \) 4621

\(\displaystyle -\frac {\int \frac {\cos ^4(e+f x)}{\left (1-\cos ^2(e+f x)\right )^2 \left (a \cos ^2(e+f x)+b\right )^2}d\cos (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle -\frac {\frac {\cos (e+f x)}{2 (a+b) \left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}-\frac {\int \frac {b-(a-2 b) \cos ^2(e+f x)}{\left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )^2}d\cos (e+f x)}{2 (a+b)}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle -\frac {\frac {\cos (e+f x)}{2 (a+b) \left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}-\frac {\frac {(a-b) \cos (e+f x)}{(a+b) \left (a \cos ^2(e+f x)+b\right )}-\frac {\int -\frac {2 b \left (2 b-(a-b) \cos ^2(e+f x)\right )}{\left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}d\cos (e+f x)}{2 b (a+b)}}{2 (a+b)}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\cos (e+f x)}{2 (a+b) \left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}-\frac {\frac {\int \frac {2 b-(a-b) \cos ^2(e+f x)}{\left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}d\cos (e+f x)}{a+b}+\frac {(a-b) \cos (e+f x)}{(a+b) \left (a \cos ^2(e+f x)+b\right )}}{2 (a+b)}}{f}\)

\(\Big \downarrow \) 397

\(\displaystyle -\frac {\frac {\cos (e+f x)}{2 (a+b) \left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}-\frac {\frac {\frac {b (3 a-b) \int \frac {1}{a \cos ^2(e+f x)+b}d\cos (e+f x)}{a+b}-\frac {(a-3 b) \int \frac {1}{1-\cos ^2(e+f x)}d\cos (e+f x)}{a+b}}{a+b}+\frac {(a-b) \cos (e+f x)}{(a+b) \left (a \cos ^2(e+f x)+b\right )}}{2 (a+b)}}{f}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\frac {\cos (e+f x)}{2 (a+b) \left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}-\frac {\frac {\frac {\sqrt {b} (3 a-b) \arctan \left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {b}}\right )}{\sqrt {a} (a+b)}-\frac {(a-3 b) \int \frac {1}{1-\cos ^2(e+f x)}d\cos (e+f x)}{a+b}}{a+b}+\frac {(a-b) \cos (e+f x)}{(a+b) \left (a \cos ^2(e+f x)+b\right )}}{2 (a+b)}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {\cos (e+f x)}{2 (a+b) \left (1-\cos ^2(e+f x)\right ) \left (a \cos ^2(e+f x)+b\right )}-\frac {\frac {\frac {\sqrt {b} (3 a-b) \arctan \left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {b}}\right )}{\sqrt {a} (a+b)}-\frac {(a-3 b) \text {arctanh}(\cos (e+f x))}{a+b}}{a+b}+\frac {(a-b) \cos (e+f x)}{(a+b) \left (a \cos ^2(e+f x)+b\right )}}{2 (a+b)}}{f}\)

Input:

Int[Csc[e + f*x]^3/(a + b*Sec[e + f*x]^2)^2,x]
 

Output:

-((Cos[e + f*x]/(2*(a + b)*(1 - Cos[e + f*x]^2)*(b + a*Cos[e + f*x]^2)) - 
((((3*a - b)*Sqrt[b]*ArcTan[(Sqrt[a]*Cos[e + f*x])/Sqrt[b]])/(Sqrt[a]*(a + 
 b)) - ((a - 3*b)*ArcTanh[Cos[e + f*x]])/(a + b))/(a + b) + ((a - b)*Cos[e 
 + f*x])/((a + b)*(b + a*Cos[e + f*x]^2)))/(2*(a + b)))/f)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4621
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*(ff*x)^n)^p/(ff*x)^(n*p)), 
x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/ 
2] && IntegerQ[n] && IntegerQ[p]
 
Maple [A] (verified)

Time = 0.79 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.01

method result size
derivativedivides \(\frac {\frac {b \left (\frac {\left (-\frac {a}{2}-\frac {b}{2}\right ) \cos \left (f x +e \right )}{b +a \cos \left (f x +e \right )^{2}}+\frac {\left (3 a -b \right ) \arctan \left (\frac {a \cos \left (f x +e \right )}{\sqrt {a b}}\right )}{2 \sqrt {a b}}\right )}{\left (a +b \right )^{3}}+\frac {1}{4 \left (a +b \right )^{2} \left (1+\cos \left (f x +e \right )\right )}+\frac {\left (-a +3 b \right ) \ln \left (1+\cos \left (f x +e \right )\right )}{4 \left (a +b \right )^{3}}+\frac {1}{4 \left (a +b \right )^{2} \left (-1+\cos \left (f x +e \right )\right )}+\frac {\left (a -3 b \right ) \ln \left (-1+\cos \left (f x +e \right )\right )}{4 \left (a +b \right )^{3}}}{f}\) \(148\)
default \(\frac {\frac {b \left (\frac {\left (-\frac {a}{2}-\frac {b}{2}\right ) \cos \left (f x +e \right )}{b +a \cos \left (f x +e \right )^{2}}+\frac {\left (3 a -b \right ) \arctan \left (\frac {a \cos \left (f x +e \right )}{\sqrt {a b}}\right )}{2 \sqrt {a b}}\right )}{\left (a +b \right )^{3}}+\frac {1}{4 \left (a +b \right )^{2} \left (1+\cos \left (f x +e \right )\right )}+\frac {\left (-a +3 b \right ) \ln \left (1+\cos \left (f x +e \right )\right )}{4 \left (a +b \right )^{3}}+\frac {1}{4 \left (a +b \right )^{2} \left (-1+\cos \left (f x +e \right )\right )}+\frac {\left (a -3 b \right ) \ln \left (-1+\cos \left (f x +e \right )\right )}{4 \left (a +b \right )^{3}}}{f}\) \(148\)
risch \(\frac {a \,{\mathrm e}^{7 i \left (f x +e \right )}-b \,{\mathrm e}^{7 i \left (f x +e \right )}+3 a \,{\mathrm e}^{5 i \left (f x +e \right )}+5 b \,{\mathrm e}^{5 i \left (f x +e \right )}+3 a \,{\mathrm e}^{3 i \left (f x +e \right )}+5 b \,{\mathrm e}^{3 i \left (f x +e \right )}+a \,{\mathrm e}^{i \left (f x +e \right )}-b \,{\mathrm e}^{i \left (f x +e \right )}}{f \left (a +b \right )^{2} \left ({\mathrm e}^{2 i \left (f x +e \right )}-1\right )^{2} \left (a \,{\mathrm e}^{4 i \left (f x +e \right )}+2 a \,{\mathrm e}^{2 i \left (f x +e \right )}+4 b \,{\mathrm e}^{2 i \left (f x +e \right )}+a \right )}+\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) a}{2 f \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}-\frac {3 \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) b}{2 f \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}-\frac {\ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) a}{2 f \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}+\frac {3 \ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) b}{2 f \left (a^{3}+3 a^{2} b +3 a \,b^{2}+b^{3}\right )}-\frac {3 i \sqrt {a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {2 i \sqrt {a b}\, {\mathrm e}^{i \left (f x +e \right )}}{a}+1\right )}{4 \left (a +b \right )^{3} f}+\frac {i \sqrt {a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}-\frac {2 i \sqrt {a b}\, {\mathrm e}^{i \left (f x +e \right )}}{a}+1\right ) b}{4 a \left (a +b \right )^{3} f}+\frac {3 i \sqrt {a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+\frac {2 i \sqrt {a b}\, {\mathrm e}^{i \left (f x +e \right )}}{a}+1\right )}{4 \left (a +b \right )^{3} f}-\frac {i \sqrt {a b}\, \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+\frac {2 i \sqrt {a b}\, {\mathrm e}^{i \left (f x +e \right )}}{a}+1\right ) b}{4 a \left (a +b \right )^{3} f}\) \(514\)

Input:

int(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x,method=_RETURNVERBOSE)
 

Output:

1/f*(b/(a+b)^3*((-1/2*a-1/2*b)*cos(f*x+e)/(b+a*cos(f*x+e)^2)+1/2*(3*a-b)/( 
a*b)^(1/2)*arctan(a*cos(f*x+e)/(a*b)^(1/2)))+1/4/(a+b)^2/(1+cos(f*x+e))+1/ 
4/(a+b)^3*(-a+3*b)*ln(1+cos(f*x+e))+1/4/(a+b)^2/(-1+cos(f*x+e))+1/4*(a-3*b 
)/(a+b)^3*ln(-1+cos(f*x+e)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 334 vs. \(2 (131) = 262\).

Time = 0.16 (sec) , antiderivative size = 698, normalized size of antiderivative = 4.75 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="fricas")
 

Output:

[1/4*(2*(a^2 - b^2)*cos(f*x + e)^3 - ((3*a^2 - a*b)*cos(f*x + e)^4 - (3*a^ 
2 - 4*a*b + b^2)*cos(f*x + e)^2 - 3*a*b + b^2)*sqrt(-b/a)*log((a*cos(f*x + 
 e)^2 - 2*a*sqrt(-b/a)*cos(f*x + e) - b)/(a*cos(f*x + e)^2 + b)) + 4*(a*b 
+ b^2)*cos(f*x + e) - ((a^2 - 3*a*b)*cos(f*x + e)^4 - (a^2 - 4*a*b + 3*b^2 
)*cos(f*x + e)^2 - a*b + 3*b^2)*log(1/2*cos(f*x + e) + 1/2) + ((a^2 - 3*a* 
b)*cos(f*x + e)^4 - (a^2 - 4*a*b + 3*b^2)*cos(f*x + e)^2 - a*b + 3*b^2)*lo 
g(-1/2*cos(f*x + e) + 1/2))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*f*cos(f*x 
 + e)^4 - (a^4 + 2*a^3*b - 2*a*b^3 - b^4)*f*cos(f*x + e)^2 - (a^3*b + 3*a^ 
2*b^2 + 3*a*b^3 + b^4)*f), 1/4*(2*(a^2 - b^2)*cos(f*x + e)^3 + 2*((3*a^2 - 
 a*b)*cos(f*x + e)^4 - (3*a^2 - 4*a*b + b^2)*cos(f*x + e)^2 - 3*a*b + b^2) 
*sqrt(b/a)*arctan(a*sqrt(b/a)*cos(f*x + e)/b) + 4*(a*b + b^2)*cos(f*x + e) 
 - ((a^2 - 3*a*b)*cos(f*x + e)^4 - (a^2 - 4*a*b + 3*b^2)*cos(f*x + e)^2 - 
a*b + 3*b^2)*log(1/2*cos(f*x + e) + 1/2) + ((a^2 - 3*a*b)*cos(f*x + e)^4 - 
 (a^2 - 4*a*b + 3*b^2)*cos(f*x + e)^2 - a*b + 3*b^2)*log(-1/2*cos(f*x + e) 
 + 1/2))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*f*cos(f*x + e)^4 - (a^4 + 2* 
a^3*b - 2*a*b^3 - b^4)*f*cos(f*x + e)^2 - (a^3*b + 3*a^2*b^2 + 3*a*b^3 + b 
^4)*f)]
 

Sympy [F]

\[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\int \frac {\csc ^{3}{\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{2}}\, dx \] Input:

integrate(csc(f*x+e)**3/(a+b*sec(f*x+e)**2)**2,x)
 

Output:

Integral(csc(e + f*x)**3/(a + b*sec(e + f*x)**2)**2, x)
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.57 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=-\frac {\frac {{\left (a - 3 \, b\right )} \log \left (\cos \left (f x + e\right ) + 1\right )}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} - \frac {{\left (a - 3 \, b\right )} \log \left (\cos \left (f x + e\right ) - 1\right )}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} - \frac {2 \, {\left (3 \, a b - b^{2}\right )} \arctan \left (\frac {a \cos \left (f x + e\right )}{\sqrt {a b}}\right )}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \sqrt {a b}} - \frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )}}{{\left (a^{3} + 2 \, a^{2} b + a b^{2}\right )} \cos \left (f x + e\right )^{4} - a^{2} b - 2 \, a b^{2} - b^{3} - {\left (a^{3} + a^{2} b - a b^{2} - b^{3}\right )} \cos \left (f x + e\right )^{2}}}{4 \, f} \] Input:

integrate(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="maxima")
 

Output:

-1/4*((a - 3*b)*log(cos(f*x + e) + 1)/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) - (a 
 - 3*b)*log(cos(f*x + e) - 1)/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) - 2*(3*a*b - 
 b^2)*arctan(a*cos(f*x + e)/sqrt(a*b))/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*sq 
rt(a*b)) - 2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))/((a^3 + 2*a^2*b + 
 a*b^2)*cos(f*x + e)^4 - a^2*b - 2*a*b^2 - b^3 - (a^3 + a^2*b - a*b^2 - b^ 
3)*cos(f*x + e)^2))/f
 

Giac [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.60 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=-\frac {{\left (a - 3 \, b\right )} \log \left ({\left | \cos \left (f x + e\right ) + 1 \right |}\right )}{4 \, {\left (a^{3} f + 3 \, a^{2} b f + 3 \, a b^{2} f + b^{3} f\right )}} + \frac {{\left (a - 3 \, b\right )} \log \left ({\left | \cos \left (f x + e\right ) - 1 \right |}\right )}{4 \, {\left (a^{3} f + 3 \, a^{2} b f + 3 \, a b^{2} f + b^{3} f\right )}} + \frac {{\left (3 \, a b - b^{2}\right )} \arctan \left (\frac {a \cos \left (f x + e\right )}{\sqrt {a b}}\right )}{2 \, {\left (a^{3} f + 3 \, a^{2} b f + 3 \, a b^{2} f + b^{3} f\right )} \sqrt {a b}} + \frac {a \cos \left (f x + e\right )^{3} - b \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )}{2 \, {\left (a \cos \left (f x + e\right )^{4} - a \cos \left (f x + e\right )^{2} + b \cos \left (f x + e\right )^{2} - b\right )} {\left (a^{2} f + 2 \, a b f + b^{2} f\right )}} \] Input:

integrate(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x, algorithm="giac")
 

Output:

-1/4*(a - 3*b)*log(abs(cos(f*x + e) + 1))/(a^3*f + 3*a^2*b*f + 3*a*b^2*f + 
 b^3*f) + 1/4*(a - 3*b)*log(abs(cos(f*x + e) - 1))/(a^3*f + 3*a^2*b*f + 3* 
a*b^2*f + b^3*f) + 1/2*(3*a*b - b^2)*arctan(a*cos(f*x + e)/sqrt(a*b))/((a^ 
3*f + 3*a^2*b*f + 3*a*b^2*f + b^3*f)*sqrt(a*b)) + 1/2*(a*cos(f*x + e)^3 - 
b*cos(f*x + e)^3 + 2*b*cos(f*x + e))/((a*cos(f*x + e)^4 - a*cos(f*x + e)^2 
 + b*cos(f*x + e)^2 - b)*(a^2*f + 2*a*b*f + b^2*f))
 

Mupad [B] (verification not implemented)

Time = 13.48 (sec) , antiderivative size = 1845, normalized size of antiderivative = 12.55 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx=\text {Too large to display} \] Input:

int(1/(sin(e + f*x)^3*(a + b/cos(e + f*x)^2)^2),x)
 

Output:

- ((cos(e + f*x)^3*(a - b))/(2*(2*a*b + a^2 + b^2)) + (b*cos(e + f*x))/(2* 
a*b + a^2 + b^2))/(f*(b - a*cos(e + f*x)^4 + cos(e + f*x)^2*(a - b))) - (l 
og(cos(e + f*x) - 1)*(b/(a + b)^3 - 1/(4*(a + b)^2)))/f - (log(cos(e + f*x 
) + 1)*(a - 3*b))/(4*f*(a + b)^3) - (atan((((-a*b)^(1/2)*((cos(e + f*x)*(a 
*b^4 - 6*a^4*b + a^5 - 6*a^2*b^3 + 18*a^3*b^2))/(2*(4*a*b^3 + 4*a^3*b + a^ 
4 + b^4 + 6*a^2*b^2)) + ((-a*b)^(1/2)*((4*a^8*b + 4*a^2*b^7 + 24*a^3*b^6 + 
 60*a^4*b^5 + 80*a^5*b^4 + 60*a^6*b^3 + 24*a^7*b^2)/(6*a*b^5 + 6*a^5*b + a 
^6 + b^6 + 15*a^2*b^4 + 20*a^3*b^3 + 15*a^4*b^2) - (cos(e + f*x)*(-a*b)^(1 
/2)*(3*a - b)*(80*a^8*b + 16*a^9 - 16*a^2*b^7 - 80*a^3*b^6 - 144*a^4*b^5 - 
 80*a^5*b^4 + 80*a^6*b^3 + 144*a^7*b^2))/(8*(a*b^3 + 3*a^3*b + a^4 + 3*a^2 
*b^2)*(4*a*b^3 + 4*a^3*b + a^4 + b^4 + 6*a^2*b^2)))*(3*a - b))/(4*(a*b^3 + 
 3*a^3*b + a^4 + 3*a^2*b^2)))*(3*a - b)*1i)/(4*(a*b^3 + 3*a^3*b + a^4 + 3* 
a^2*b^2)) + ((-a*b)^(1/2)*((cos(e + f*x)*(a*b^4 - 6*a^4*b + a^5 - 6*a^2*b^ 
3 + 18*a^3*b^2))/(2*(4*a*b^3 + 4*a^3*b + a^4 + b^4 + 6*a^2*b^2)) - ((-a*b) 
^(1/2)*((4*a^8*b + 4*a^2*b^7 + 24*a^3*b^6 + 60*a^4*b^5 + 80*a^5*b^4 + 60*a 
^6*b^3 + 24*a^7*b^2)/(6*a*b^5 + 6*a^5*b + a^6 + b^6 + 15*a^2*b^4 + 20*a^3* 
b^3 + 15*a^4*b^2) + (cos(e + f*x)*(-a*b)^(1/2)*(3*a - b)*(80*a^8*b + 16*a^ 
9 - 16*a^2*b^7 - 80*a^3*b^6 - 144*a^4*b^5 - 80*a^5*b^4 + 80*a^6*b^3 + 144* 
a^7*b^2))/(8*(a*b^3 + 3*a^3*b + a^4 + 3*a^2*b^2)*(4*a*b^3 + 4*a^3*b + a^4 
+ b^4 + 6*a^2*b^2)))*(3*a - b))/(4*(a*b^3 + 3*a^3*b + a^4 + 3*a^2*b^2))...
 

Reduce [B] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 770, normalized size of antiderivative = 5.24 \[ \int \frac {\csc ^3(e+f x)}{\left (a+b \sec ^2(e+f x)\right )^2} \, dx =\text {Too large to display} \] Input:

int(csc(f*x+e)^3/(a+b*sec(f*x+e)^2)^2,x)
 

Output:

( - 6*sqrt(b)*sqrt(a)*atan((sqrt(a + b)*tan((e + f*x)/2) - sqrt(a))/sqrt(b 
))*sin(e + f*x)**4*a**2 + 2*sqrt(b)*sqrt(a)*atan((sqrt(a + b)*tan((e + f*x 
)/2) - sqrt(a))/sqrt(b))*sin(e + f*x)**4*a*b + 6*sqrt(b)*sqrt(a)*atan((sqr 
t(a + b)*tan((e + f*x)/2) - sqrt(a))/sqrt(b))*sin(e + f*x)**2*a**2 + 4*sqr 
t(b)*sqrt(a)*atan((sqrt(a + b)*tan((e + f*x)/2) - sqrt(a))/sqrt(b))*sin(e 
+ f*x)**2*a*b - 2*sqrt(b)*sqrt(a)*atan((sqrt(a + b)*tan((e + f*x)/2) - sqr 
t(a))/sqrt(b))*sin(e + f*x)**2*b**2 + 6*sqrt(b)*sqrt(a)*atan((sqrt(a + b)* 
tan((e + f*x)/2) + sqrt(a))/sqrt(b))*sin(e + f*x)**4*a**2 - 2*sqrt(b)*sqrt 
(a)*atan((sqrt(a + b)*tan((e + f*x)/2) + sqrt(a))/sqrt(b))*sin(e + f*x)**4 
*a*b - 6*sqrt(b)*sqrt(a)*atan((sqrt(a + b)*tan((e + f*x)/2) + sqrt(a))/sqr 
t(b))*sin(e + f*x)**2*a**2 - 4*sqrt(b)*sqrt(a)*atan((sqrt(a + b)*tan((e + 
f*x)/2) + sqrt(a))/sqrt(b))*sin(e + f*x)**2*a*b + 2*sqrt(b)*sqrt(a)*atan(( 
sqrt(a + b)*tan((e + f*x)/2) + sqrt(a))/sqrt(b))*sin(e + f*x)**2*b**2 - 2* 
cos(e + f*x)*sin(e + f*x)**2*a**3 + 2*cos(e + f*x)*sin(e + f*x)**2*a*b**2 
+ 2*cos(e + f*x)*a**3 + 4*cos(e + f*x)*a**2*b + 2*cos(e + f*x)*a*b**2 + 2* 
log(tan((e + f*x)/2))*sin(e + f*x)**4*a**3 - 6*log(tan((e + f*x)/2))*sin(e 
 + f*x)**4*a**2*b - 2*log(tan((e + f*x)/2))*sin(e + f*x)**2*a**3 + 4*log(t 
an((e + f*x)/2))*sin(e + f*x)**2*a**2*b + 6*log(tan((e + f*x)/2))*sin(e + 
f*x)**2*a*b**2 - sin(e + f*x)**4*a**3 + 3*sin(e + f*x)**4*a**2*b + sin(e + 
 f*x)**2*a**3 - 2*sin(e + f*x)**2*a**2*b - 3*sin(e + f*x)**2*a*b**2)/(4...