\(\int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx\) [74]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 181 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\frac {\left (3 a^2-6 a b-b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 a^{3/2} f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {(3 a-b) \cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 a f}-\frac {\cos (e+f x) \sin ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 f} \] Output:

1/8*(3*a^2-6*a*b-b^2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2) 
)/a^(3/2)/f+b^(1/2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2)) 
/f-1/8*(3*a-b)*cos(f*x+e)*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/a/f-1/4*co 
s(f*x+e)*sin(f*x+e)^3*(a+b+b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx \] Input:

Integrate[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^4,x]
 

Output:

Integrate[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^4, x]
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.09, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4620, 369, 440, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin (e+f x)^4 \sqrt {a+b \sec (e+f x)^2}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x) \sqrt {b \tan ^2(e+f x)+a+b}}{\left (\tan ^2(e+f x)+1\right )^3}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 369

\(\displaystyle \frac {\frac {1}{4} \int \frac {\tan ^2(e+f x) \left (4 b \tan ^2(e+f x)+3 (a+b)\right )}{\left (\tan ^2(e+f x)+1\right )^2 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 \left (\tan ^2(e+f x)+1\right )^2}}{f}\)

\(\Big \downarrow \) 440

\(\displaystyle \frac {\frac {1}{4} \left (\frac {\int \frac {8 a b \tan ^2(e+f x)+(3 a-b) (a+b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}-\frac {(3 a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}\right )-\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 \left (\tan ^2(e+f x)+1\right )^2}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{4} \left (\frac {\left (3 a^2-6 a b-b^2\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+8 a b \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}-\frac {(3 a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}\right )-\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 \left (\tan ^2(e+f x)+1\right )^2}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{4} \left (\frac {\left (3 a^2-6 a b-b^2\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+8 a b \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{2 a}-\frac {(3 a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}\right )-\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 \left (\tan ^2(e+f x)+1\right )^2}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{4} \left (\frac {\left (3 a^2-6 a b-b^2\right ) \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+8 a \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 a}-\frac {(3 a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}\right )-\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 \left (\tan ^2(e+f x)+1\right )^2}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{4} \left (\frac {\left (3 a^2-6 a b-b^2\right ) \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+8 a \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 a}-\frac {(3 a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}\right )-\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 \left (\tan ^2(e+f x)+1\right )^2}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{4} \left (\frac {\frac {\left (3 a^2-6 a b-b^2\right ) \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a}}+8 a \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 a}-\frac {(3 a-b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}\right )-\frac {\tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 \left (\tan ^2(e+f x)+1\right )^2}}{f}\)

Input:

Int[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^4,x]
 

Output:

(-1/4*(Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/(1 + Tan[e + f*x]^2) 
^2 + ((((3*a^2 - 6*a*b - b^2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b 
*Tan[e + f*x]^2]])/Sqrt[a] + 8*a*Sqrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sq 
rt[a + b + b*Tan[e + f*x]^2]])/(2*a) - ((3*a - b)*Tan[e + f*x]*Sqrt[a + b 
+ b*Tan[e + f*x]^2])/(2*a*(1 + Tan[e + f*x]^2)))/4)/f
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 369
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2* 
b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1))   Int[(e*x)^(m - 2)*(a + b*x^2)^(p 
 + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] 
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0 
] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 440
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[g*(b*e - a*f)*(g*x)^(m - 1)*(a + 
 b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] - Simp[ 
g^2/(2*b*(b*c - a*d)*(p + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + 
d*x^2)^q*Simp[c*(b*e - a*f)*(m - 1) + (d*(b*e - a*f)*(m + 2*q + 1) - b*2*(c 
*f - d*e)*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, q}, x] && 
 LtQ[p, -1] && GtQ[m, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(644\) vs. \(2(159)=318\).

Time = 21.79 (sec) , antiderivative size = 645, normalized size of antiderivative = 3.56

method result size
default \(\frac {\left (4 \sqrt {-a}\, \sqrt {b}\, \ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) a +4 \sqrt {-a}\, \sqrt {b}\, \ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) a +3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{2}-6 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a b -\ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) b^{2}+\left (2 \cos \left (f x +e \right )^{3}+2 \cos \left (f x +e \right )^{2}-5 \cos \left (f x +e \right )-5\right ) \sin \left (f x +e \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {-a}\, a +\left (1+\cos \left (f x +e \right )\right ) \sin \left (f x +e \right ) \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b \right ) \cos \left (f x +e \right ) \sqrt {a +b \sec \left (f x +e \right )^{2}}}{8 f a \sqrt {-a}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(645\)

Input:

int((a+b*sec(f*x+e)^2)^(1/2)*sin(f*x+e)^4,x,method=_RETURNVERBOSE)
 

Output:

1/8/f/a/(-a)^(1/2)*(4*(-a)^(1/2)*b^(1/2)*ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*a+4*(-a)^(1/2)*b^(1/2)*ln( 
-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2) 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e) 
-1))*a+3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f 
*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e 
)*a)*a^2-6*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos 
(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x 
+e)*a)*a*b-ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos 
(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x 
+e)*a)*b^2+(2*cos(f*x+e)^3+2*cos(f*x+e)^2-5*cos(f*x+e)-5)*sin(f*x+e)*((b+a 
*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(-a)^(1/2)*a+(1+cos(f*x+e))*sin(f*x 
+e)*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b)*cos(f*x+e)*( 
a+b*sec(f*x+e)^2)^(1/2)/(1+cos(f*x+e))/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^ 
2)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.86 (sec) , antiderivative size = 1565, normalized size of antiderivative = 8.65 \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\text {Too large to display} \] Input:

integrate((a+b*sec(f*x+e)^2)^(1/2)*sin(f*x+e)^4,x, algorithm="fricas")
 

Output:

[1/64*(16*a^2*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b 
^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b) 
*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x 
 + e)^4) + (3*a^2 - 6*a*b - b^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256 
*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x 
+ e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b 
+ 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - 
 a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - ( 
a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e) 
^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8*(2*a^2*cos(f*x + e)^3 - (5*a^2 - 
 a*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + 
e))/(a^2*f), 1/64*(32*a^2*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2 
*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a* 
b*cos(f*x + e)^2 + b^2)*sin(f*x + e))) + (3*a^2 - 6*a*b - b^2)*sqrt(-a)*lo 
g(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 
14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a* 
b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16* 
a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b 
 + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e)) 
*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 8...
 

Sympy [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \sin ^{4}{\left (e + f x \right )}\, dx \] Input:

integrate((a+b*sec(f*x+e)**2)**(1/2)*sin(f*x+e)**4,x)
 

Output:

Integral(sqrt(a + b*sec(e + f*x)**2)*sin(e + f*x)**4, x)
 

Maxima [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{4} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(1/2)*sin(f*x+e)^4,x, algorithm="maxima")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^4, x)
 

Giac [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{4} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(1/2)*sin(f*x+e)^4,x, algorithm="giac")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^4, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\int {\sin \left (e+f\,x\right )}^4\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \] Input:

int(sin(e + f*x)^4*(a + b/cos(e + f*x)^2)^(1/2),x)
 

Output:

int(sin(e + f*x)^4*(a + b/cos(e + f*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \sin ^4(e+f x) \, dx=\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sin \left (f x +e \right )^{4}d x \] Input:

int((a+b*sec(f*x+e)^2)^(1/2)*sin(f*x+e)^4,x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*sin(e + f*x)**4,x)