\(\int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\) [78]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 105 \[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f}-\frac {\cot ^3(e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{3 (a+b) f} \] Output:

b^(1/2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f-cot(f*x+e 
)*(a+b+b*tan(f*x+e)^2)^(1/2)/f-1/3*cot(f*x+e)^3*(a+b+b*tan(f*x+e)^2)^(3/2) 
/(a+b)/f
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 5.57 (sec) , antiderivative size = 285, normalized size of antiderivative = 2.71 \[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {\sqrt {2} \cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \left (1-\frac {a \sin ^2(e+f x)}{a+b}\right ) \left (\frac {4 b \operatorname {Hypergeometric2F1}\left (2,2,\frac {3}{2},-\frac {b \tan ^2(e+f x)}{a+b}\right ) \sec ^2(e+f x) \sqrt {\frac {a+b \sec ^2(e+f x)}{a+b}} \left (a+b-a \sin ^2(e+f x)\right )^2 \tan ^2(e+f x)}{(a+b)^2}+\left (a+b+2 a \sin ^2(e+f x)\right ) \left (\sqrt {\frac {a+b \sec ^2(e+f x)}{a+b}}+\arcsin \left (\sqrt {-\frac {b \tan ^2(e+f x)}{a+b}}\right ) \sqrt {-\frac {b \tan ^2(e+f x)}{a+b}}\right )\right )}{3 f \sqrt {a+2 b+a \cos (2 e+2 f x)} \sqrt {\frac {a+b \sec ^2(e+f x)}{a+b}} \sqrt {a+b-a \sin ^2(e+f x)}} \] Input:

Integrate[Csc[e + f*x]^4*Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

-1/3*(Sqrt[2]*Cot[e + f*x]*Csc[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2]*(1 - 
(a*Sin[e + f*x]^2)/(a + b))*((4*b*Hypergeometric2F1[2, 2, 3/2, -((b*Tan[e 
+ f*x]^2)/(a + b))]*Sec[e + f*x]^2*Sqrt[(a + b*Sec[e + f*x]^2)/(a + b)]*(a 
 + b - a*Sin[e + f*x]^2)^2*Tan[e + f*x]^2)/(a + b)^2 + (a + b + 2*a*Sin[e 
+ f*x]^2)*(Sqrt[(a + b*Sec[e + f*x]^2)/(a + b)] + ArcSin[Sqrt[-((b*Tan[e + 
 f*x]^2)/(a + b))]]*Sqrt[-((b*Tan[e + f*x]^2)/(a + b))])))/(f*Sqrt[a + 2*b 
 + a*Cos[2*e + 2*f*x]]*Sqrt[(a + b*Sec[e + f*x]^2)/(a + b)]*Sqrt[a + b - a 
*Sin[e + f*x]^2])
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.95, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {3042, 4620, 358, 247, 224, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sec (e+f x)^2}}{\sin (e+f x)^4}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \cot ^4(e+f x) \left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 358

\(\displaystyle \frac {\int \cot ^2(e+f x) \sqrt {b \tan ^2(e+f x)+a+b}d\tan (e+f x)-\frac {\cot ^3(e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{3 (a+b)}}{f}\)

\(\Big \downarrow \) 247

\(\displaystyle \frac {b \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\frac {\cot ^3(e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{3 (a+b)}-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {b \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}-\frac {\cot ^3(e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{3 (a+b)}-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )-\frac {\cot ^3(e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{3 (a+b)}-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

Input:

Int[Csc[e + f*x]^4*Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(Sqrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]] - 
Cot[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2] - (Cot[e + f*x]^3*(a + b + b*T 
an[e + f*x]^2)^(3/2))/(3*(a + b)))/f
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 247
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^ 
(m + 1)*((a + b*x^2)^p/(c*(m + 1))), x] - Simp[2*b*(p/(c^2*(m + 1)))   Int[ 
(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && GtQ[p, 
0] && LtQ[m, -1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, 
m, p, x]
 

rule 358
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x_ 
Symbol] :> Simp[c*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] + S 
imp[d/e^2   Int[(e*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e 
, m, p}, x] && NeQ[b*c - a*d, 0] && EqQ[Simplify[m + 2*p + 3], 0] && NeQ[m, 
 -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(588\) vs. \(2(93)=186\).

Time = 18.88 (sec) , antiderivative size = 589, normalized size of antiderivative = 5.61

method result size
default \(\frac {\left (\left (-3 \cos \left (f x +e \right )+3\right ) \sin \left (f x +e \right ) b^{\frac {3}{2}} \ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right )+\left (-3 \cos \left (f x +e \right )+3\right ) \sin \left (f x +e \right ) \sqrt {b}\, \ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) a +\left (-3 \cos \left (f x +e \right )+3\right ) \sin \left (f x +e \right ) b^{\frac {3}{2}} \ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right )+\left (-3 \cos \left (f x +e \right )+3\right ) \sin \left (f x +e \right ) \sqrt {b}\, \ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) a +\left (4 \cos \left (f x +e \right )^{2}-6\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a +\left (6 \cos \left (f x +e \right )^{2}-8\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b \right ) \sqrt {a +b \sec \left (f x +e \right )^{2}}\, \cot \left (f x +e \right ) \csc \left (f x +e \right )^{2}}{6 f \left (a +b \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(589\)

Input:

int(csc(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/6/f/(a+b)*((-3*cos(f*x+e)+3)*sin(f*x+e)*b^(3/2)*ln(4*(b^(1/2)*((b+a*cos( 
f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/( 
1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))+(-3*cos(f*x+e)+3) 
*sin(f*x+e)*b^(1/2)*ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1 
/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x 
+e)*a-a-b)/(sin(f*x+e)+1))*a+(-3*cos(f*x+e)+3)*sin(f*x+e)*b^(3/2)*ln(-4*(b 
^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+ 
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))+ 
(-3*cos(f*x+e)+3)*sin(f*x+e)*b^(1/2)*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e) 
)^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*a+(4*cos(f*x+e)^2-6)*((b+a*co 
s(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a+(6*cos(f*x+e)^2-8)*((b+a*cos(f*x+e)^ 
2)/(1+cos(f*x+e))^2)^(1/2)*b)*(a+b*sec(f*x+e)^2)^(1/2)/((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)*cot(f*x+e)*csc(f*x+e)^2
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 202 vs. \(2 (93) = 186\).

Time = 0.27 (sec) , antiderivative size = 436, normalized size of antiderivative = 4.15 \[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\left [\frac {3 \, {\left ({\left (a + b\right )} \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {b} \log \left (\frac {{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) \sin \left (f x + e\right ) - 4 \, {\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{3} - {\left (3 \, a + 4 \, b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{12 \, {\left ({\left (a + b\right )} f \cos \left (f x + e\right )^{2} - {\left (a + b\right )} f\right )} \sin \left (f x + e\right )}, \frac {3 \, {\left ({\left (a + b\right )} \cos \left (f x + e\right )^{2} - a - b\right )} \sqrt {-b} \arctan \left (-\frac {{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 2 \, {\left ({\left (2 \, a + 3 \, b\right )} \cos \left (f x + e\right )^{3} - {\left (3 \, a + 4 \, b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{6 \, {\left ({\left (a + b\right )} f \cos \left (f x + e\right )^{2} - {\left (a + b\right )} f\right )} \sin \left (f x + e\right )}\right ] \] Input:

integrate(csc(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[1/12*(3*((a + b)*cos(f*x + e)^2 - a - b)*sqrt(b)*log(((a^2 - 6*a*b + b^2) 
*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 
 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*s 
in(f*x + e) + 8*b^2)/cos(f*x + e)^4)*sin(f*x + e) - 4*((2*a + 3*b)*cos(f*x 
 + e)^3 - (3*a + 4*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + 
e)^2))/(((a + b)*f*cos(f*x + e)^2 - (a + b)*f)*sin(f*x + e)), 1/6*(3*((a + 
 b)*cos(f*x + e)^2 - a - b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 
 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/(( 
a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*sin(f*x + e) - 2*((2*a + 3*b)*cos 
(f*x + e)^3 - (3*a + 4*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f* 
x + e)^2))/(((a + b)*f*cos(f*x + e)^2 - (a + b)*f)*sin(f*x + e))]
 

Sympy [F]

\[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \csc ^{4}{\left (e + f x \right )}\, dx \] Input:

integrate(csc(f*x+e)**4*(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(sqrt(a + b*sec(e + f*x)**2)*csc(e + f*x)**4, x)
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.78 \[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {3 \, \sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {{\left (a + b\right )} b}}\right ) - \frac {3 \, \sqrt {b \tan \left (f x + e\right )^{2} + a + b}}{\tan \left (f x + e\right )} - \frac {{\left (b \tan \left (f x + e\right )^{2} + a + b\right )}^{\frac {3}{2}}}{{\left (a + b\right )} \tan \left (f x + e\right )^{3}}}{3 \, f} \] Input:

integrate(csc(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

1/3*(3*sqrt(b)*arcsinh(b*tan(f*x + e)/sqrt((a + b)*b)) - 3*sqrt(b*tan(f*x 
+ e)^2 + a + b)/tan(f*x + e) - (b*tan(f*x + e)^2 + a + b)^(3/2)/((a + b)*t 
an(f*x + e)^3))/f
 

Giac [F]

\[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{4} \,d x } \] Input:

integrate(csc(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a)*csc(f*x + e)^4, x)
 

Mupad [F(-1)]

Timed out. \[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \frac {\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}}{{\sin \left (e+f\,x\right )}^4} \,d x \] Input:

int((a + b/cos(e + f*x)^2)^(1/2)/sin(e + f*x)^4,x)
 

Output:

int((a + b/cos(e + f*x)^2)^(1/2)/sin(e + f*x)^4, x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \csc ^4(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \csc \left (f x +e \right )^{4}d x \] Input:

int(csc(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*csc(e + f*x)**4,x)