\(\int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx\) [41]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 18, antiderivative size = 582 \[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx=\frac {(c+d x)^2}{2 a^2 d}-\frac {i b^3 (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{b-\sqrt {-a^2+b^2}}\right )}{a^2 \left (-a^2+b^2\right )^{3/2} f}+\frac {2 i b (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{b-\sqrt {-a^2+b^2}}\right )}{a^2 \sqrt {-a^2+b^2} f}+\frac {i b^3 (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{b+\sqrt {-a^2+b^2}}\right )}{a^2 \left (-a^2+b^2\right )^{3/2} f}-\frac {2 i b (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{b+\sqrt {-a^2+b^2}}\right )}{a^2 \sqrt {-a^2+b^2} f}+\frac {b^2 d \log (b+a \cos (e+f x))}{a^2 \left (a^2-b^2\right ) f^2}-\frac {b^3 d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b-\sqrt {-a^2+b^2}}\right )}{a^2 \left (-a^2+b^2\right )^{3/2} f^2}+\frac {2 b d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b-\sqrt {-a^2+b^2}}\right )}{a^2 \sqrt {-a^2+b^2} f^2}+\frac {b^3 d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b+\sqrt {-a^2+b^2}}\right )}{a^2 \left (-a^2+b^2\right )^{3/2} f^2}-\frac {2 b d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b+\sqrt {-a^2+b^2}}\right )}{a^2 \sqrt {-a^2+b^2} f^2}+\frac {b^2 (c+d x) \sin (e+f x)}{a \left (a^2-b^2\right ) f (b+a \cos (e+f x))} \] Output:

1/2*(d*x+c)^2/a^2/d-I*b^3*(d*x+c)*ln(1+a*exp(I*(f*x+e))/(b-(-a^2+b^2)^(1/2 
)))/a^2/(-a^2+b^2)^(3/2)/f+2*I*b*(d*x+c)*ln(1+a*exp(I*(f*x+e))/(b-(-a^2+b^ 
2)^(1/2)))/a^2/(-a^2+b^2)^(1/2)/f+I*b^3*(d*x+c)*ln(1+a*exp(I*(f*x+e))/(b+( 
-a^2+b^2)^(1/2)))/a^2/(-a^2+b^2)^(3/2)/f-2*I*b*(d*x+c)*ln(1+a*exp(I*(f*x+e 
))/(b+(-a^2+b^2)^(1/2)))/a^2/(-a^2+b^2)^(1/2)/f+b^2*d*ln(b+a*cos(f*x+e))/a 
^2/(a^2-b^2)/f^2-b^3*d*polylog(2,-a*exp(I*(f*x+e))/(b-(-a^2+b^2)^(1/2)))/a 
^2/(-a^2+b^2)^(3/2)/f^2+2*b*d*polylog(2,-a*exp(I*(f*x+e))/(b-(-a^2+b^2)^(1 
/2)))/a^2/(-a^2+b^2)^(1/2)/f^2+b^3*d*polylog(2,-a*exp(I*(f*x+e))/(b+(-a^2+ 
b^2)^(1/2)))/a^2/(-a^2+b^2)^(3/2)/f^2-2*b*d*polylog(2,-a*exp(I*(f*x+e))/(b 
+(-a^2+b^2)^(1/2)))/a^2/(-a^2+b^2)^(1/2)/f^2+b^2*(d*x+c)*sin(f*x+e)/a/(a^2 
-b^2)/f/(b+a*cos(f*x+e))
 

Mathematica [A] (warning: unable to verify)

Time = 9.87 (sec) , antiderivative size = 1037, normalized size of antiderivative = 1.78 \[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx =\text {Too large to display} \] Input:

Integrate[(c + d*x)/(a + b*Sec[e + f*x])^2,x]
 

Output:

((e + f*x)*(-2*d*e + 2*c*f + d*(e + f*x))*(b + a*Cos[e + f*x])^2*Sec[e + f 
*x]^2)/(2*a^2*f^2*(a + b*Sec[e + f*x])^2) + ((b + a*Cos[e + f*x])*Sec[e + 
f*x]^2*(b^2*d*e*Sin[e + f*x] - b^2*c*f*Sin[e + f*x] - b^2*d*(e + f*x)*Sin[ 
e + f*x]))/(a*(-a + b)*(a + b)*f^2*(a + b*Sec[e + f*x])^2) + (b*Cos[(e + f 
*x)/2]^2*(b + a*Cos[e + f*x])*((-2*(2*a^2 - b^2)*(d*e - c*f)*ArcTan[(Sqrt[ 
a - b]*Tan[(e + f*x)/2])/Sqrt[-a - b]])/(Sqrt[-a - b]*Sqrt[a - b]) - b*d*L 
og[Sec[(e + f*x)/2]^2] + b*d*Log[-((b + a*Cos[e + f*x])*Sec[(e + f*x)/2]^2 
)] - (I*(2*a^2 - b^2)*d*(Log[1 + I*Tan[(e + f*x)/2]]*Log[(I*(Sqrt[a + b] - 
 Sqrt[a - b]*Tan[(e + f*x)/2]))/(Sqrt[a - b] + I*Sqrt[a + b])] - Log[1 - I 
*Tan[(e + f*x)/2]]*Log[(Sqrt[a + b] - Sqrt[a - b]*Tan[(e + f*x)/2])/(I*Sqr 
t[a - b] + Sqrt[a + b])] + Log[1 - I*Tan[(e + f*x)/2]]*Log[(I*(Sqrt[a + b] 
 + Sqrt[a - b]*Tan[(e + f*x)/2]))/(Sqrt[a - b] + I*Sqrt[a + b])] - Log[1 + 
 I*Tan[(e + f*x)/2]]*Log[(Sqrt[a + b] + Sqrt[a - b]*Tan[(e + f*x)/2])/(I*S 
qrt[a - b] + Sqrt[a + b])] - PolyLog[2, (Sqrt[a - b]*(1 - I*Tan[(e + f*x)/ 
2]))/(Sqrt[a - b] - I*Sqrt[a + b])] + PolyLog[2, (Sqrt[a - b]*(1 - I*Tan[( 
e + f*x)/2]))/(Sqrt[a - b] + I*Sqrt[a + b])] - PolyLog[2, (Sqrt[a - b]*(1 
+ I*Tan[(e + f*x)/2]))/(Sqrt[a - b] - I*Sqrt[a + b])] + PolyLog[2, (Sqrt[a 
 - b]*(1 + I*Tan[(e + f*x)/2]))/(Sqrt[a - b] + I*Sqrt[a + b])]))/(Sqrt[a - 
 b]*Sqrt[a + b]))*Sec[e + f*x]^2*((2*a^2 - b^2)*(c*f + d*f*x) + a*b*d*Sin[ 
e + f*x])*(Sqrt[a + b] - Sqrt[a - b]*Tan[(e + f*x)/2])*(Sqrt[a + b] + S...
 

Rubi [A] (verified)

Time = 1.37 (sec) , antiderivative size = 582, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3042, 4679, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {c+d x}{\left (a+b \csc \left (e+f x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4679

\(\displaystyle \int \left (\frac {b^2 (c+d x)}{a^2 (a \cos (e+f x)+b)^2}-\frac {2 b (c+d x)}{a^2 (a \cos (e+f x)+b)}+\frac {c+d x}{a^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 i b (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{b-\sqrt {b^2-a^2}}\right )}{a^2 f \sqrt {b^2-a^2}}-\frac {2 i b (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{\sqrt {b^2-a^2}+b}\right )}{a^2 f \sqrt {b^2-a^2}}+\frac {b^2 (c+d x) \sin (e+f x)}{a f \left (a^2-b^2\right ) (a \cos (e+f x)+b)}+\frac {2 b d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b-\sqrt {b^2-a^2}}\right )}{a^2 f^2 \sqrt {b^2-a^2}}-\frac {2 b d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b+\sqrt {b^2-a^2}}\right )}{a^2 f^2 \sqrt {b^2-a^2}}+\frac {b^2 d \log (a \cos (e+f x)+b)}{a^2 f^2 \left (a^2-b^2\right )}-\frac {i b^3 (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{b-\sqrt {b^2-a^2}}\right )}{a^2 f \left (b^2-a^2\right )^{3/2}}+\frac {i b^3 (c+d x) \log \left (1+\frac {a e^{i (e+f x)}}{\sqrt {b^2-a^2}+b}\right )}{a^2 f \left (b^2-a^2\right )^{3/2}}-\frac {b^3 d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b-\sqrt {b^2-a^2}}\right )}{a^2 f^2 \left (b^2-a^2\right )^{3/2}}+\frac {b^3 d \operatorname {PolyLog}\left (2,-\frac {a e^{i (e+f x)}}{b+\sqrt {b^2-a^2}}\right )}{a^2 f^2 \left (b^2-a^2\right )^{3/2}}+\frac {(c+d x)^2}{2 a^2 d}\)

Input:

Int[(c + d*x)/(a + b*Sec[e + f*x])^2,x]
 

Output:

(c + d*x)^2/(2*a^2*d) - (I*b^3*(c + d*x)*Log[1 + (a*E^(I*(e + f*x)))/(b - 
Sqrt[-a^2 + b^2])])/(a^2*(-a^2 + b^2)^(3/2)*f) + ((2*I)*b*(c + d*x)*Log[1 
+ (a*E^(I*(e + f*x)))/(b - Sqrt[-a^2 + b^2])])/(a^2*Sqrt[-a^2 + b^2]*f) + 
(I*b^3*(c + d*x)*Log[1 + (a*E^(I*(e + f*x)))/(b + Sqrt[-a^2 + b^2])])/(a^2 
*(-a^2 + b^2)^(3/2)*f) - ((2*I)*b*(c + d*x)*Log[1 + (a*E^(I*(e + f*x)))/(b 
 + Sqrt[-a^2 + b^2])])/(a^2*Sqrt[-a^2 + b^2]*f) + (b^2*d*Log[b + a*Cos[e + 
 f*x]])/(a^2*(a^2 - b^2)*f^2) - (b^3*d*PolyLog[2, -((a*E^(I*(e + f*x)))/(b 
 - Sqrt[-a^2 + b^2]))])/(a^2*(-a^2 + b^2)^(3/2)*f^2) + (2*b*d*PolyLog[2, - 
((a*E^(I*(e + f*x)))/(b - Sqrt[-a^2 + b^2]))])/(a^2*Sqrt[-a^2 + b^2]*f^2) 
+ (b^3*d*PolyLog[2, -((a*E^(I*(e + f*x)))/(b + Sqrt[-a^2 + b^2]))])/(a^2*( 
-a^2 + b^2)^(3/2)*f^2) - (2*b*d*PolyLog[2, -((a*E^(I*(e + f*x)))/(b + Sqrt 
[-a^2 + b^2]))])/(a^2*Sqrt[-a^2 + b^2]*f^2) + (b^2*(c + d*x)*Sin[e + f*x]) 
/(a*(a^2 - b^2)*f*(b + a*Cos[e + f*x]))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4679
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(n_.)*((c_.) + (d_.)*(x_))^(m_.) 
, x_Symbol] :> Int[ExpandIntegrand[(c + d*x)^m, 1/(Sin[e + f*x]^n/(b + a*Si 
n[e + f*x])^n), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[n, 0] && IGt 
Q[m, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1288 vs. \(2 (528 ) = 1056\).

Time = 0.21 (sec) , antiderivative size = 1289, normalized size of antiderivative = 2.21

method result size
risch \(\text {Expression too large to display}\) \(1289\)

Input:

int((d*x+c)/(a+b*sec(f*x+e))^2,x,method=_RETURNVERBOSE)
 

Output:

1/2/a^2*d*x^2+1/a^2*c*x+2*I/f/(a^2-b^2)*b*d/(-a^2+b^2)^(1/2)*ln((-exp(I*(f 
*x+e))*a+(-a^2+b^2)^(1/2)-b)/(-b+(-a^2+b^2)^(1/2)))*x+2*I*b^2*(d*x+c)*(b*e 
xp(I*(f*x+e))+a)/a^2/(a^2-b^2)/f/(a*exp(2*I*(f*x+e))+2*b*exp(I*(f*x+e))+a) 
+1/f^2/(a^2-b^2)/a^2*b^3*d/(-a^2+b^2)^(1/2)*dilog((exp(I*(f*x+e))*a+(-a^2+ 
b^2)^(1/2)+b)/(b+(-a^2+b^2)^(1/2)))-1/f^2/(a^2-b^2)/a^2*b^3*d/(-a^2+b^2)^( 
1/2)*dilog((-exp(I*(f*x+e))*a+(-a^2+b^2)^(1/2)-b)/(-b+(-a^2+b^2)^(1/2)))-2 
/f^2/(a^2-b^2)*b*d/(-a^2+b^2)^(1/2)*dilog((exp(I*(f*x+e))*a+(-a^2+b^2)^(1/ 
2)+b)/(b+(-a^2+b^2)^(1/2)))+2/f^2/(a^2-b^2)*b*d/(-a^2+b^2)^(1/2)*dilog((-e 
xp(I*(f*x+e))*a+(-a^2+b^2)^(1/2)-b)/(-b+(-a^2+b^2)^(1/2)))-I/f/(a^2-b^2)/a 
^2*b^3*d/(-a^2+b^2)^(1/2)*ln((-exp(I*(f*x+e))*a+(-a^2+b^2)^(1/2)-b)/(-b+(- 
a^2+b^2)^(1/2)))*x+I/f^2/(a^2-b^2)/a^2*b^3*d/(-a^2+b^2)^(1/2)*ln((exp(I*(f 
*x+e))*a+(-a^2+b^2)^(1/2)+b)/(b+(-a^2+b^2)^(1/2)))*e+2*I/f^2/(a^2-b^2)*b*d 
/(-a^2+b^2)^(1/2)*ln((-exp(I*(f*x+e))*a+(-a^2+b^2)^(1/2)-b)/(-b+(-a^2+b^2) 
^(1/2)))*e+I/f/(a^2-b^2)/a^2*b^3*d/(-a^2+b^2)^(1/2)*ln((exp(I*(f*x+e))*a+( 
-a^2+b^2)^(1/2)+b)/(b+(-a^2+b^2)^(1/2)))*x-4*I/f^2/(a^2-b^2)^(3/2)*b*d*e*a 
rctan(1/2*(2*exp(I*(f*x+e))*a+2*b)/(a^2-b^2)^(1/2))-I/f^2/(a^2-b^2)/a^2*b^ 
3*d/(-a^2+b^2)^(1/2)*ln((-exp(I*(f*x+e))*a+(-a^2+b^2)^(1/2)-b)/(-b+(-a^2+b 
^2)^(1/2)))*e+2*I/f^2/(a^2-b^2)^(3/2)/a^2*b^3*d*e*arctan(1/2*(2*exp(I*(f*x 
+e))*a+2*b)/(a^2-b^2)^(1/2))-2/f^2/(a^2-b^2)/a^2*b^2*ln(exp(I*(f*x+e)))*d+ 
1/f^2/(a^2-b^2)/a^2*b^2*ln(a*exp(2*I*(f*x+e))+2*b*exp(I*(f*x+e))+a)*d-2...
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2080 vs. \(2 (520) = 1040\).

Time = 0.28 (sec) , antiderivative size = 2080, normalized size of antiderivative = 3.57 \[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx=\text {Too large to display} \] Input:

integrate((d*x+c)/(a+b*sec(f*x+e))^2,x, algorithm="fricas")
 

Output:

1/2*((a^4*b - 2*a^2*b^3 + b^5)*d*f^2*x^2 + 2*(a^4*b - 2*a^2*b^3 + b^5)*c*f 
^2*x - ((2*a^4*b - a^2*b^3)*d*cos(f*x + e) + (2*a^3*b^2 - a*b^4)*d)*sqrt(- 
(a^2 - b^2)/a^2)*dilog(-(b*cos(f*x + e) + I*b*sin(f*x + e) + (a*cos(f*x + 
e) + I*a*sin(f*x + e))*sqrt(-(a^2 - b^2)/a^2) + a)/a + 1) + ((2*a^4*b - a^ 
2*b^3)*d*cos(f*x + e) + (2*a^3*b^2 - a*b^4)*d)*sqrt(-(a^2 - b^2)/a^2)*dilo 
g(-(b*cos(f*x + e) + I*b*sin(f*x + e) - (a*cos(f*x + e) + I*a*sin(f*x + e) 
)*sqrt(-(a^2 - b^2)/a^2) + a)/a + 1) - ((2*a^4*b - a^2*b^3)*d*cos(f*x + e) 
 + (2*a^3*b^2 - a*b^4)*d)*sqrt(-(a^2 - b^2)/a^2)*dilog(-(b*cos(f*x + e) - 
I*b*sin(f*x + e) + (a*cos(f*x + e) - I*a*sin(f*x + e))*sqrt(-(a^2 - b^2)/a 
^2) + a)/a + 1) + ((2*a^4*b - a^2*b^3)*d*cos(f*x + e) + (2*a^3*b^2 - a*b^4 
)*d)*sqrt(-(a^2 - b^2)/a^2)*dilog(-(b*cos(f*x + e) - I*b*sin(f*x + e) - (a 
*cos(f*x + e) - I*a*sin(f*x + e))*sqrt(-(a^2 - b^2)/a^2) + a)/a + 1) + (-I 
*(2*a^3*b^2 - a*b^4)*d*f*x - I*(2*a^3*b^2 - a*b^4)*d*e + (-I*(2*a^4*b - a^ 
2*b^3)*d*f*x - I*(2*a^4*b - a^2*b^3)*d*e)*cos(f*x + e))*sqrt(-(a^2 - b^2)/ 
a^2)*log((b*cos(f*x + e) + I*b*sin(f*x + e) + (a*cos(f*x + e) + I*a*sin(f* 
x + e))*sqrt(-(a^2 - b^2)/a^2) + a)/a) + (I*(2*a^3*b^2 - a*b^4)*d*f*x + I* 
(2*a^3*b^2 - a*b^4)*d*e + (I*(2*a^4*b - a^2*b^3)*d*f*x + I*(2*a^4*b - a^2* 
b^3)*d*e)*cos(f*x + e))*sqrt(-(a^2 - b^2)/a^2)*log((b*cos(f*x + e) + I*b*s 
in(f*x + e) - (a*cos(f*x + e) + I*a*sin(f*x + e))*sqrt(-(a^2 - b^2)/a^2) + 
 a)/a) + (I*(2*a^3*b^2 - a*b^4)*d*f*x + I*(2*a^3*b^2 - a*b^4)*d*e + (I*...
 

Sympy [F]

\[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx=\int \frac {c + d x}{\left (a + b \sec {\left (e + f x \right )}\right )^{2}}\, dx \] Input:

integrate((d*x+c)/(a+b*sec(f*x+e))**2,x)
 

Output:

Integral((c + d*x)/(a + b*sec(e + f*x))**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((d*x+c)/(a+b*sec(f*x+e))^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?` f 
or more de
 

Giac [F]

\[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx=\int { \frac {d x + c}{{\left (b \sec \left (f x + e\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((d*x+c)/(a+b*sec(f*x+e))^2,x, algorithm="giac")
 

Output:

integrate((d*x + c)/(b*sec(f*x + e) + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx=\text {Hanged} \] Input:

int((c + d*x)/(a + b/cos(e + f*x))^2,x)
 

Output:

\text{Hanged}
 

Reduce [F]

\[ \int \frac {c+d x}{(a+b \sec (e+f x))^2} \, dx=\text {too large to display} \] Input:

int((d*x+c)/(a+b*sec(f*x+e))^2,x)
 

Output:

( - 16*sqrt( - a**2 + b**2)*atan((tan((e + f*x)/2)*a - tan((e + f*x)/2)*b) 
/sqrt( - a**2 + b**2))*cos(e + f*x)*a**4*b*c*f - 8*sqrt( - a**2 + b**2)*at 
an((tan((e + f*x)/2)*a - tan((e + f*x)/2)*b)/sqrt( - a**2 + b**2))*cos(e + 
 f*x)*a**3*b**2*c*f + 8*sqrt( - a**2 + b**2)*atan((tan((e + f*x)/2)*a - ta 
n((e + f*x)/2)*b)/sqrt( - a**2 + b**2))*cos(e + f*x)*a**2*b**3*c*f + 4*sqr 
t( - a**2 + b**2)*atan((tan((e + f*x)/2)*a - tan((e + f*x)/2)*b)/sqrt( - a 
**2 + b**2))*cos(e + f*x)*a*b**4*c*f - 16*sqrt( - a**2 + b**2)*atan((tan(( 
e + f*x)/2)*a - tan((e + f*x)/2)*b)/sqrt( - a**2 + b**2))*a**3*b**2*c*f - 
8*sqrt( - a**2 + b**2)*atan((tan((e + f*x)/2)*a - tan((e + f*x)/2)*b)/sqrt 
( - a**2 + b**2))*a**2*b**3*c*f + 8*sqrt( - a**2 + b**2)*atan((tan((e + f* 
x)/2)*a - tan((e + f*x)/2)*b)/sqrt( - a**2 + b**2))*a*b**4*c*f + 4*sqrt( - 
 a**2 + b**2)*atan((tan((e + f*x)/2)*a - tan((e + f*x)/2)*b)/sqrt( - a**2 
+ b**2))*b**5*c*f - 32*cos(e + f*x)*int(x/(2*tan((e + f*x)/2)**4*a**5 - 7* 
tan((e + f*x)/2)**4*a**4*b + 8*tan((e + f*x)/2)**4*a**3*b**2 - 2*tan((e + 
f*x)/2)**4*a**2*b**3 - 2*tan((e + f*x)/2)**4*a*b**4 + tan((e + f*x)/2)**4* 
b**5 - 4*tan((e + f*x)/2)**2*a**5 + 6*tan((e + f*x)/2)**2*a**4*b + 4*tan(( 
e + f*x)/2)**2*a**3*b**2 - 8*tan((e + f*x)/2)**2*a**2*b**3 + 2*tan((e + f* 
x)/2)**2*b**5 + 2*a**5 + a**4*b - 4*a**3*b**2 - 2*a**2*b**3 + 2*a*b**4 + b 
**5),x)*a**10*b*d*f**2 - 16*cos(e + f*x)*int(x/(2*tan((e + f*x)/2)**4*a**5 
 - 7*tan((e + f*x)/2)**4*a**4*b + 8*tan((e + f*x)/2)**4*a**3*b**2 - 2*t...