\(\int (e x)^{-1+n} (a+b \csc (c+d x^n))^2 \, dx\) [76]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 80 \[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {a^2 (e x)^n}{e n}-\frac {2 a b x^{-n} (e x)^n \text {arctanh}\left (\cos \left (c+d x^n\right )\right )}{d e n}-\frac {b^2 x^{-n} (e x)^n \cot \left (c+d x^n\right )}{d e n} \] Output:

a^2*(e*x)^n/e/n-2*a*b*(e*x)^n*arctanh(cos(c+d*x^n))/d/e/n/(x^n)-b^2*(e*x)^ 
n*cot(c+d*x^n)/d/e/n/(x^n)
 

Mathematica [A] (verified)

Time = 1.36 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.28 \[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {x^{-n} (e x)^n \left (-b^2 \cot \left (\frac {1}{2} \left (c+d x^n\right )\right )+2 a \left (a c+a d x^n-2 b \log \left (\cos \left (\frac {1}{2} \left (c+d x^n\right )\right )\right )+2 b \log \left (\sin \left (\frac {1}{2} \left (c+d x^n\right )\right )\right )\right )+b^2 \tan \left (\frac {1}{2} \left (c+d x^n\right )\right )\right )}{2 d e n} \] Input:

Integrate[(e*x)^(-1 + n)*(a + b*Csc[c + d*x^n])^2,x]
 

Output:

((e*x)^n*(-(b^2*Cot[(c + d*x^n)/2]) + 2*a*(a*c + a*d*x^n - 2*b*Log[Cos[(c 
+ d*x^n)/2]] + 2*b*Log[Sin[(c + d*x^n)/2]]) + b^2*Tan[(c + d*x^n)/2]))/(2* 
d*e*n*x^n)
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.71, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {4697, 4693, 3042, 4260, 3042, 4254, 24, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (e x)^{n-1} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx\)

\(\Big \downarrow \) 4697

\(\displaystyle \frac {x^{-n} (e x)^n \int x^{n-1} \left (a+b \csc \left (d x^n+c\right )\right )^2dx}{e}\)

\(\Big \downarrow \) 4693

\(\displaystyle \frac {x^{-n} (e x)^n \int \left (a+b \csc \left (d x^n+c\right )\right )^2dx^n}{e n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {x^{-n} (e x)^n \int \left (a+b \csc \left (d x^n+c\right )\right )^2dx^n}{e n}\)

\(\Big \downarrow \) 4260

\(\displaystyle \frac {x^{-n} (e x)^n \left (2 a b \int \csc \left (d x^n+c\right )dx^n+b^2 \int \csc ^2\left (d x^n+c\right )dx^n+a^2 x^n\right )}{e n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {x^{-n} (e x)^n \left (2 a b \int \csc \left (d x^n+c\right )dx^n+b^2 \int \csc \left (d x^n+c\right )^2dx^n+a^2 x^n\right )}{e n}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {x^{-n} (e x)^n \left (2 a b \int \csc \left (d x^n+c\right )dx^n-\frac {b^2 \int 1d\cot \left (d x^n+c\right )}{d}+a^2 x^n\right )}{e n}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {x^{-n} (e x)^n \left (2 a b \int \csc \left (d x^n+c\right )dx^n+a^2 x^n-\frac {b^2 \cot \left (c+d x^n\right )}{d}\right )}{e n}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {x^{-n} (e x)^n \left (a^2 x^n-\frac {2 a b \text {arctanh}\left (\cos \left (c+d x^n\right )\right )}{d}-\frac {b^2 \cot \left (c+d x^n\right )}{d}\right )}{e n}\)

Input:

Int[(e*x)^(-1 + n)*(a + b*Csc[c + d*x^n])^2,x]
 

Output:

((e*x)^n*(a^2*x^n - (2*a*b*ArcTanh[Cos[c + d*x^n]])/d - (b^2*Cot[c + d*x^n 
])/d))/(e*n*x^n)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4260
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Simp[a^2*x, x] + 
 (Simp[2*a*b   Int[Csc[c + d*x], x], x] + Simp[b^2   Int[Csc[c + d*x]^2, x] 
, x]) /; FreeQ[{a, b, c, d}, x]
 

rule 4693
Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol 
] :> Simp[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Csc[c + d*x])^ 
p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify[(m + 
 1)/n], 0] && IntegerQ[p]
 

rule 4697
Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x 
_Symbol] :> Simp[e^IntPart[m]*((e*x)^FracPart[m]/x^FracPart[m])   Int[x^m*( 
a + b*Csc[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
 
Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.64 (sec) , antiderivative size = 275, normalized size of antiderivative = 3.44

method result size
risch \(\frac {a^{2} x \,{\mathrm e}^{\frac {\left (-1+n \right ) \left (-i \operatorname {csgn}\left (i e \right ) \operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i e x \right ) \pi +i \operatorname {csgn}\left (i e \right ) \operatorname {csgn}\left (i e x \right )^{2} \pi +i \operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i e x \right )^{2} \pi -i \operatorname {csgn}\left (i e x \right )^{3} \pi +2 \ln \left (x \right )+2 \ln \left (e \right )\right )}{2}}}{n}-\frac {2 i x \,b^{2} {\mathrm e}^{\frac {\left (-1+n \right ) \left (-i \operatorname {csgn}\left (i e \right ) \operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i e x \right ) \pi +i \operatorname {csgn}\left (i e \right ) \operatorname {csgn}\left (i e x \right )^{2} \pi +i \operatorname {csgn}\left (i x \right ) \operatorname {csgn}\left (i e x \right )^{2} \pi -i \operatorname {csgn}\left (i e x \right )^{3} \pi +2 \ln \left (x \right )+2 \ln \left (e \right )\right )}{2}} x^{-n}}{d n \left ({\mathrm e}^{2 i \left (c +d \,x^{n}\right )}-1\right )}-\frac {4 \,\operatorname {arctanh}\left ({\mathrm e}^{i \left (c +d \,x^{n}\right )}\right ) e^{n} b a \,{\mathrm e}^{\frac {i \pi \,\operatorname {csgn}\left (i e x \right ) \left (-1+n \right ) \left (\operatorname {csgn}\left (i e x \right )-\operatorname {csgn}\left (i x \right )\right ) \left (-\operatorname {csgn}\left (i e x \right )+\operatorname {csgn}\left (i e \right )\right )}{2}}}{d e n}\) \(275\)

Input:

int((e*x)^(-1+n)*(a+b*csc(c+d*x^n))^2,x,method=_RETURNVERBOSE)
 

Output:

a^2/n*x*exp(1/2*(-1+n)*(-I*csgn(I*e)*csgn(I*x)*csgn(I*e*x)*Pi+I*csgn(I*e)* 
csgn(I*e*x)^2*Pi+I*csgn(I*x)*csgn(I*e*x)^2*Pi-I*csgn(I*e*x)^3*Pi+2*ln(x)+2 
*ln(e)))-2*I*x*b^2*exp(1/2*(-1+n)*(-I*csgn(I*e)*csgn(I*x)*csgn(I*e*x)*Pi+I 
*csgn(I*e)*csgn(I*e*x)^2*Pi+I*csgn(I*x)*csgn(I*e*x)^2*Pi-I*csgn(I*e*x)^3*P 
i+2*ln(x)+2*ln(e)))/d/n/(x^n)/(exp(2*I*(c+d*x^n))-1)-4*arctanh(exp(I*(c+d* 
x^n)))/d/e*e^n/n*b*a*exp(1/2*I*Pi*csgn(I*e*x)*(-1+n)*(csgn(I*e*x)-csgn(I*x 
))*(-csgn(I*e*x)+csgn(I*e)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.45 \[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {a^{2} d e^{n - 1} x^{n} \sin \left (d x^{n} + c\right ) - a b e^{n - 1} \log \left (\frac {1}{2} \, \cos \left (d x^{n} + c\right ) + \frac {1}{2}\right ) \sin \left (d x^{n} + c\right ) + a b e^{n - 1} \log \left (-\frac {1}{2} \, \cos \left (d x^{n} + c\right ) + \frac {1}{2}\right ) \sin \left (d x^{n} + c\right ) - b^{2} e^{n - 1} \cos \left (d x^{n} + c\right )}{d n \sin \left (d x^{n} + c\right )} \] Input:

integrate((e*x)^(-1+n)*(a+b*csc(c+d*x^n))^2,x, algorithm="fricas")
 

Output:

(a^2*d*e^(n - 1)*x^n*sin(d*x^n + c) - a*b*e^(n - 1)*log(1/2*cos(d*x^n + c) 
 + 1/2)*sin(d*x^n + c) + a*b*e^(n - 1)*log(-1/2*cos(d*x^n + c) + 1/2)*sin( 
d*x^n + c) - b^2*e^(n - 1)*cos(d*x^n + c))/(d*n*sin(d*x^n + c))
 

Sympy [F]

\[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\int \left (e x\right )^{n - 1} \left (a + b \csc {\left (c + d x^{n} \right )}\right )^{2}\, dx \] Input:

integrate((e*x)**(-1+n)*(a+b*csc(c+d*x**n))**2,x)
 

Output:

Integral((e*x)**(n - 1)*(a + b*csc(c + d*x**n))**2, x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 207 vs. \(2 (80) = 160\).

Time = 0.07 (sec) , antiderivative size = 207, normalized size of antiderivative = 2.59 \[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=-\frac {2 \, b^{2} e^{n} \sin \left (2 \, d x^{n} + 2 \, c\right )}{d e n \cos \left (2 \, d x^{n} + 2 \, c\right )^{2} + d e n \sin \left (2 \, d x^{n} + 2 \, c\right )^{2} - 2 \, d e n \cos \left (2 \, d x^{n} + 2 \, c\right ) + d e n} + \frac {\left (e x\right )^{n} a^{2}}{e n} - \frac {{\left (e^{n} \log \left (\cos \left (d x^{n}\right )^{2} + 2 \, \cos \left (d x^{n}\right ) \cos \left (c\right ) + \cos \left (c\right )^{2} + \sin \left (d x^{n}\right )^{2} - 2 \, \sin \left (d x^{n}\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}\right ) - e^{n} \log \left (\cos \left (d x^{n}\right )^{2} - 2 \, \cos \left (d x^{n}\right ) \cos \left (c\right ) + \cos \left (c\right )^{2} + \sin \left (d x^{n}\right )^{2} + 2 \, \sin \left (d x^{n}\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}\right )\right )} a b}{d e n} \] Input:

integrate((e*x)^(-1+n)*(a+b*csc(c+d*x^n))^2,x, algorithm="maxima")
 

Output:

-2*b^2*e^n*sin(2*d*x^n + 2*c)/(d*e*n*cos(2*d*x^n + 2*c)^2 + d*e*n*sin(2*d* 
x^n + 2*c)^2 - 2*d*e*n*cos(2*d*x^n + 2*c) + d*e*n) + (e*x)^n*a^2/(e*n) - ( 
e^n*log(cos(d*x^n)^2 + 2*cos(d*x^n)*cos(c) + cos(c)^2 + sin(d*x^n)^2 - 2*s 
in(d*x^n)*sin(c) + sin(c)^2) - e^n*log(cos(d*x^n)^2 - 2*cos(d*x^n)*cos(c) 
+ cos(c)^2 + sin(d*x^n)^2 + 2*sin(d*x^n)*sin(c) + sin(c)^2))*a*b/(d*e*n)
 

Giac [F]

\[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\int { {\left (b \csc \left (d x^{n} + c\right ) + a\right )}^{2} \left (e x\right )^{n - 1} \,d x } \] Input:

integrate((e*x)^(-1+n)*(a+b*csc(c+d*x^n))^2,x, algorithm="giac")
 

Output:

integrate((b*csc(d*x^n + c) + a)^2*(e*x)^(n - 1), x)
 

Mupad [B] (verification not implemented)

Time = 17.33 (sec) , antiderivative size = 182, normalized size of antiderivative = 2.28 \[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {a^2\,x\,{\left (e\,x\right )}^{n-1}}{n}-\frac {b^2\,x\,{\left (e\,x\right )}^{n-1}\,2{}\mathrm {i}}{d\,n\,x^n\,\left ({\mathrm {e}}^{c\,2{}\mathrm {i}+d\,x^n\,2{}\mathrm {i}}-1\right )}-\frac {2\,a\,b\,x\,\ln \left (-a\,b\,{\left (e\,x\right )}^{n-1}\,4{}\mathrm {i}-a\,b\,{\mathrm {e}}^{c\,1{}\mathrm {i}}\,{\mathrm {e}}^{d\,x^n\,1{}\mathrm {i}}\,{\left (e\,x\right )}^{n-1}\,4{}\mathrm {i}\right )\,{\left (e\,x\right )}^{n-1}}{d\,n\,x^n}+\frac {2\,a\,b\,x\,\ln \left (a\,b\,{\left (e\,x\right )}^{n-1}\,4{}\mathrm {i}-a\,b\,{\mathrm {e}}^{c\,1{}\mathrm {i}}\,{\mathrm {e}}^{d\,x^n\,1{}\mathrm {i}}\,{\left (e\,x\right )}^{n-1}\,4{}\mathrm {i}\right )\,{\left (e\,x\right )}^{n-1}}{d\,n\,x^n} \] Input:

int((a + b/sin(c + d*x^n))^2*(e*x)^(n - 1),x)
 

Output:

(a^2*x*(e*x)^(n - 1))/n - (b^2*x*(e*x)^(n - 1)*2i)/(d*n*x^n*(exp(c*2i + d* 
x^n*2i) - 1)) - (2*a*b*x*log(- a*b*(e*x)^(n - 1)*4i - a*b*exp(c*1i)*exp(d* 
x^n*1i)*(e*x)^(n - 1)*4i)*(e*x)^(n - 1))/(d*n*x^n) + (2*a*b*x*log(a*b*(e*x 
)^(n - 1)*4i - a*b*exp(c*1i)*exp(d*x^n*1i)*(e*x)^(n - 1)*4i)*(e*x)^(n - 1) 
)/(d*n*x^n)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.96 \[ \int (e x)^{-1+n} \left (a+b \csc \left (c+d x^n\right )\right )^2 \, dx=\frac {e^{n} \left (-\cos \left (x^{n} d +c \right ) b^{2}+x^{n} \sin \left (x^{n} d +c \right ) a^{2} d +2 \,\mathrm {log}\left (\tan \left (\frac {x^{n} d}{2}+\frac {c}{2}\right )\right ) \sin \left (x^{n} d +c \right ) a b \right )}{\sin \left (x^{n} d +c \right ) d e n} \] Input:

int((e*x)^(-1+n)*(a+b*csc(c+d*x^n))^2,x)
 

Output:

(e**n*( - cos(x**n*d + c)*b**2 + x**n*sin(x**n*d + c)*a**2*d + 2*log(tan(( 
x**n*d + c)/2))*sin(x**n*d + c)*a*b))/(sin(x**n*d + c)*d*e*n)