\(\int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx\) [144]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [F]
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 34, antiderivative size = 117 \[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\frac {2 \sqrt {1+e^{2 i (d+e x)}} F^{c (a+b x)} \sqrt {f \csc (d+e x)} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {e-2 i b c \log (F)}{4 e},\frac {1}{4} \left (5-\frac {2 i b c \log (F)}{e}\right ),-e^{2 i (d+e x)}\right ) \sqrt {g \tan (d+e x)}}{i e+2 b c \log (F)} \] Output:

2*(1+exp(2*I*(e*x+d)))^(1/2)*F^(c*(b*x+a))*(f*csc(e*x+d))^(1/2)*hypergeom( 
[1/2, 1/4*(e-2*I*b*c*ln(F))/e],[5/4-1/2*I*b*c*ln(F)/e],-exp(2*I*(e*x+d)))* 
(g*tan(e*x+d))^(1/2)/(I*e+2*b*c*ln(F))
 

Mathematica [A] (warning: unable to verify)

Time = 3.24 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.07 \[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\frac {4 f F^{c (a+b x)} \cos (d+e x) (1-i \cot (d+e x)) \operatorname {Hypergeometric2F1}\left (1,\frac {3}{4}-\frac {i b c \log (F)}{2 e},\frac {5}{4}-\frac {i b c \log (F)}{2 e},-\cos (2 (d+e x))-i \sin (2 (d+e x))\right ) \sqrt {g \tan (d+e x)}}{\sqrt {f \csc (d+e x)} (e-2 i b c \log (F))} \] Input:

Integrate[F^(c*(a + b*x))*Sqrt[f*Csc[d + e*x]]*Sqrt[g*Tan[d + e*x]],x]
 

Output:

(4*f*F^(c*(a + b*x))*Cos[d + e*x]*(1 - I*Cot[d + e*x])*Hypergeometric2F1[1 
, 3/4 - ((I/2)*b*c*Log[F])/e, 5/4 - ((I/2)*b*c*Log[F])/e, -Cos[2*(d + e*x) 
] - I*Sin[2*(d + e*x)]]*Sqrt[g*Tan[d + e*x]])/(Sqrt[f*Csc[d + e*x]]*(e - ( 
2*I)*b*c*Log[F]))
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx\)

\(\Big \downarrow \) 7271

\(\displaystyle \frac {\sqrt {f \csc (d+e x)} \int F^{c (a+b x)} \sqrt {\csc (d+e x)} \sqrt {g \tan (d+e x)}dx}{\sqrt {\csc (d+e x)}}\)

\(\Big \downarrow \) 7271

\(\displaystyle \frac {\sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \int F^{c (a+b x)} \sqrt {\csc (d+e x)} \sqrt {\tan (d+e x)}dx}{\sqrt {\tan (d+e x)} \sqrt {\csc (d+e x)}}\)

\(\Big \downarrow \) 7292

\(\displaystyle \frac {\sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \int F^{a c+b x c} \sqrt {\csc (d+e x)} \sqrt {\tan (d+e x)}dx}{\sqrt {\tan (d+e x)} \sqrt {\csc (d+e x)}}\)

\(\Big \downarrow \) 7299

\(\displaystyle \frac {\sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \int F^{a c+b x c} \sqrt {\csc (d+e x)} \sqrt {\tan (d+e x)}dx}{\sqrt {\tan (d+e x)} \sqrt {\csc (d+e x)}}\)

Input:

Int[F^(c*(a + b*x))*Sqrt[f*Csc[d + e*x]]*Sqrt[g*Tan[d + e*x]],x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 7271
Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a*v^m)^ 
FracPart[p]/v^(m*FracPart[p]))   Int[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, 
x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !(EqQ[a, 1] && EqQ[m, 1]) &&  !(Eq 
Q[v, x] && EqQ[m, 1])
 

rule 7292
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =! 
= u]
 

rule 7299
Int[u_, x_] :> CannotIntegrate[u, x]
 
Maple [F]

\[\int F^{c \left (b x +a \right )} \sqrt {f \csc \left (e x +d \right )}\, \sqrt {g \tan \left (e x +d \right )}d x\]

Input:

int(F^(c*(b*x+a))*(f*csc(e*x+d))^(1/2)*(g*tan(e*x+d))^(1/2),x)
 

Output:

int(F^(c*(b*x+a))*(f*csc(e*x+d))^(1/2)*(g*tan(e*x+d))^(1/2),x)
 

Fricas [F]

\[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\int { \sqrt {f \csc \left (e x + d\right )} \sqrt {g \tan \left (e x + d\right )} F^{{\left (b x + a\right )} c} \,d x } \] Input:

integrate(F^(c*(b*x+a))*(f*csc(e*x+d))^(1/2)*(g*tan(e*x+d))^(1/2),x, algor 
ithm="fricas")
 

Output:

integral(sqrt(f*csc(e*x + d))*sqrt(g*tan(e*x + d))*F^(b*c*x + a*c), x)
 

Sympy [F]

\[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\int F^{c \left (a + b x\right )} \sqrt {f \csc {\left (d + e x \right )}} \sqrt {g \tan {\left (d + e x \right )}}\, dx \] Input:

integrate(F**(c*(b*x+a))*(f*csc(e*x+d))**(1/2)*(g*tan(e*x+d))**(1/2),x)
 

Output:

Integral(F**(c*(a + b*x))*sqrt(f*csc(d + e*x))*sqrt(g*tan(d + e*x)), x)
 

Maxima [F]

\[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\int { \sqrt {f \csc \left (e x + d\right )} \sqrt {g \tan \left (e x + d\right )} F^{{\left (b x + a\right )} c} \,d x } \] Input:

integrate(F^(c*(b*x+a))*(f*csc(e*x+d))^(1/2)*(g*tan(e*x+d))^(1/2),x, algor 
ithm="maxima")
 

Output:

integrate(sqrt(f*csc(e*x + d))*sqrt(g*tan(e*x + d))*F^((b*x + a)*c), x)
 

Giac [F]

\[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\int { \sqrt {f \csc \left (e x + d\right )} \sqrt {g \tan \left (e x + d\right )} F^{{\left (b x + a\right )} c} \,d x } \] Input:

integrate(F^(c*(b*x+a))*(f*csc(e*x+d))^(1/2)*(g*tan(e*x+d))^(1/2),x, algor 
ithm="giac")
 

Output:

integrate(sqrt(f*csc(e*x + d))*sqrt(g*tan(e*x + d))*F^((b*x + a)*c), x)
 

Mupad [F(-1)]

Timed out. \[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\int F^{c\,\left (a+b\,x\right )}\,\sqrt {g\,\mathrm {tan}\left (d+e\,x\right )}\,\sqrt {\frac {f}{\sin \left (d+e\,x\right )}} \,d x \] Input:

int(F^(c*(a + b*x))*(g*tan(d + e*x))^(1/2)*(f/sin(d + e*x))^(1/2),x)
 

Output:

int(F^(c*(a + b*x))*(g*tan(d + e*x))^(1/2)*(f/sin(d + e*x))^(1/2), x)
 

Reduce [F]

\[ \int F^{c (a+b x)} \sqrt {f \csc (d+e x)} \sqrt {g \tan (d+e x)} \, dx=\sqrt {g}\, f^{a c +\frac {1}{2}} \left (\int f^{b c x} \sqrt {\tan \left (e x +d \right )}\, \sqrt {\csc \left (e x +d \right )}d x \right ) \] Input:

int(F^(c*(b*x+a))*(f*csc(e*x+d))^(1/2)*(g*tan(e*x+d))^(1/2),x)
 

Output:

sqrt(g)*f**((2*a*c + 1)/2)*int(f**(b*c*x)*sqrt(tan(d + e*x))*sqrt(csc(d + 
e*x)),x)