\(\int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx\) [299]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 123 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {\log \left (1+\tan \left (\frac {1}{2} (d+e x)\right )\right )}{4 a^3 e}-\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2+a^2 \cos (d+e x)+a^2 \sin (d+e x)\right )^2}+\frac {3 (\cos (d+e x)-\sin (d+e x))}{16 e \left (a^3+a^3 \cos (d+e x)+a^3 \sin (d+e x)\right )} \] Output:

1/4*ln(1+tan(1/2*e*x+1/2*d))/a^3/e-1/16*(a*cos(e*x+d)-a*sin(e*x+d))/e/(a^2 
+a^2*cos(e*x+d)+a^2*sin(e*x+d))^2+3/16*(cos(e*x+d)-sin(e*x+d))/e/(a^3+a^3* 
cos(e*x+d)+a^3*sin(e*x+d))
 

Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.10 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {\sec ^2\left (\frac {1}{2} (d+e x)\right )+2 \left (-8 \log \left (\cos \left (\frac {1}{2} (d+e x)\right )\right )+8 \log \left (\cos \left (\frac {1}{2} (d+e x)\right )+\sin \left (\frac {1}{2} (d+e x)\right )\right )-\frac {1}{\left (\cos \left (\frac {1}{2} (d+e x)\right )+\sin \left (\frac {1}{2} (d+e x)\right )\right )^2}-\frac {6 \sin \left (\frac {1}{2} (d+e x)\right )}{\cos \left (\frac {1}{2} (d+e x)\right )+\sin \left (\frac {1}{2} (d+e x)\right )}-3 \tan \left (\frac {1}{2} (d+e x)\right )\right )}{64 a^3 e} \] Input:

Integrate[(2*a + 2*a*Cos[d + e*x] + 2*a*Sin[d + e*x])^(-3),x]
 

Output:

(Sec[(d + e*x)/2]^2 + 2*(-8*Log[Cos[(d + e*x)/2]] + 8*Log[Cos[(d + e*x)/2] 
 + Sin[(d + e*x)/2]] - (Cos[(d + e*x)/2] + Sin[(d + e*x)/2])^(-2) - (6*Sin 
[(d + e*x)/2])/(Cos[(d + e*x)/2] + Sin[(d + e*x)/2]) - 3*Tan[(d + e*x)/2]) 
)/(64*a^3*e)
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.09, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3608, 27, 3042, 3632, 3042, 3603, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(2 a \sin (d+e x)+2 a \cos (d+e x)+2 a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{(2 a \sin (d+e x)+2 a \cos (d+e x)+2 a)^3}dx\)

\(\Big \downarrow \) 3608

\(\displaystyle \frac {\int -\frac {-\cos (d+e x) a-\sin (d+e x) a+2 a}{2 (\cos (d+e x) a+\sin (d+e x) a+a)^2}dx}{8 a^2}-\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2 \sin (d+e x)+a^2 \cos (d+e x)+a^2\right )^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {-\cos (d+e x) a-\sin (d+e x) a+2 a}{(\cos (d+e x) a+\sin (d+e x) a+a)^2}dx}{16 a^2}-\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2 \sin (d+e x)+a^2 \cos (d+e x)+a^2\right )^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {-\cos (d+e x) a-\sin (d+e x) a+2 a}{(\cos (d+e x) a+\sin (d+e x) a+a)^2}dx}{16 a^2}-\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2 \sin (d+e x)+a^2 \cos (d+e x)+a^2\right )^2}\)

\(\Big \downarrow \) 3632

\(\displaystyle -\frac {-4 \int \frac {1}{\cos (d+e x) a+\sin (d+e x) a+a}dx-\frac {3 \left (a^2 \cos (d+e x)-a^2 \sin (d+e x)\right )}{e \left (a^3 \sin (d+e x)+a^3 \cos (d+e x)+a^3\right )}}{16 a^2}-\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2 \sin (d+e x)+a^2 \cos (d+e x)+a^2\right )^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-4 \int \frac {1}{\cos (d+e x) a+\sin (d+e x) a+a}dx-\frac {3 \left (a^2 \cos (d+e x)-a^2 \sin (d+e x)\right )}{e \left (a^3 \sin (d+e x)+a^3 \cos (d+e x)+a^3\right )}}{16 a^2}-\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2 \sin (d+e x)+a^2 \cos (d+e x)+a^2\right )^2}\)

\(\Big \downarrow \) 3603

\(\displaystyle -\frac {-\frac {8 \int \frac {1}{2 \tan \left (\frac {1}{2} (d+e x)\right ) a+2 a}d\tan \left (\frac {1}{2} (d+e x)\right )}{e}-\frac {3 \left (a^2 \cos (d+e x)-a^2 \sin (d+e x)\right )}{e \left (a^3 \sin (d+e x)+a^3 \cos (d+e x)+a^3\right )}}{16 a^2}-\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2 \sin (d+e x)+a^2 \cos (d+e x)+a^2\right )^2}\)

\(\Big \downarrow \) 16

\(\displaystyle -\frac {a \cos (d+e x)-a \sin (d+e x)}{16 e \left (a^2 \sin (d+e x)+a^2 \cos (d+e x)+a^2\right )^2}-\frac {-\frac {3 \left (a^2 \cos (d+e x)-a^2 \sin (d+e x)\right )}{e \left (a^3 \sin (d+e x)+a^3 \cos (d+e x)+a^3\right )}-\frac {4 \log \left (\tan \left (\frac {1}{2} (d+e x)\right )+1\right )}{a e}}{16 a^2}\)

Input:

Int[(2*a + 2*a*Cos[d + e*x] + 2*a*Sin[d + e*x])^(-3),x]
 

Output:

-1/16*(a*Cos[d + e*x] - a*Sin[d + e*x])/(e*(a^2 + a^2*Cos[d + e*x] + a^2*S 
in[d + e*x])^2) - ((-4*Log[1 + Tan[(d + e*x)/2]])/(a*e) - (3*(a^2*Cos[d + 
e*x] - a^2*Sin[d + e*x]))/(e*(a^3 + a^3*Cos[d + e*x] + a^3*Sin[d + e*x]))) 
/(16*a^2)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3603
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^ 
(-1), x_Symbol] :> Module[{f = FreeFactors[Tan[(d + e*x)/2], x]}, Simp[2*(f 
/e)   Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d + e*x) 
/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]
 

rule 3608
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^ 
(n_), x_Symbol] :> Simp[((-c)*Cos[d + e*x] + b*Sin[d + e*x])*((a + b*Cos[d 
+ e*x] + c*Sin[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2))), x] + Simp[ 
1/((n + 1)*(a^2 - b^2 - c^2))   Int[(a*(n + 1) - b*(n + 2)*Cos[d + e*x] - c 
*(n + 2)*Sin[d + e*x])*(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x 
] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && LtQ[n, -1] && 
NeQ[n, -3/2]
 

rule 3632
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]) 
/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^2, 
 x_Symbol] :> Simp[(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)*Sin[ 
d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])), x] + 
 Simp[(a*A - b*B - c*C)/(a^2 - b^2 - c^2)   Int[1/(a + b*Cos[d + e*x] + c*S 
in[d + e*x]), x], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[a^2 - b^2 
 - c^2, 0] && NeQ[a*A - b*B - c*C, 0]
 
Maple [A] (verified)

Time = 0.62 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.63

method result size
derivativedivides \(\frac {\frac {\tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{2}}{2}-3 \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-\frac {2}{\left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )^{2}}+8 \ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )+\frac {8}{1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )}}{32 e \,a^{3}}\) \(78\)
default \(\frac {\frac {\tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{2}}{2}-3 \tan \left (\frac {e x}{2}+\frac {d}{2}\right )-\frac {2}{\left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )^{2}}+8 \ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )+\frac {8}{1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )}}{32 e \,a^{3}}\) \(78\)
parallelrisch \(\frac {-12+16 \left (\sin \left (e x +d \right )+1\right ) \ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{2}+\left (-5 \cos \left (e x +d \right )-9\right ) \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+12 \cos \left (e x +d \right )}{64 a^{3} e \left (\sin \left (e x +d \right )+1\right )}\) \(82\)
norman \(\frac {-\frac {\tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{3}}{16 a e}+\frac {\tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{4}}{64 a e}+\frac {23}{64 a e}+\frac {\tan \left (\frac {e x}{2}+\frac {d}{2}\right )}{2 a e}}{a^{2} \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )^{2}}+\frac {\ln \left (1+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )\right )}{4 a^{3} e}\) \(103\)
risch \(\frac {\left (\frac {1}{16}-\frac {i}{16}\right ) \left (6 i {\mathrm e}^{2 i \left (e x +d \right )}+4 \,{\mathrm e}^{3 i \left (e x +d \right )}+8 i {\mathrm e}^{i \left (e x +d \right )}+6 \,{\mathrm e}^{2 i \left (e x +d \right )}-3+3 i\right )}{a^{3} e \left (i {\mathrm e}^{i \left (e x +d \right )}+{\mathrm e}^{2 i \left (e x +d \right )}+i+{\mathrm e}^{i \left (e x +d \right )}\right )^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (e x +d \right )}+1\right )}{4 a^{3} e}+\frac {\ln \left ({\mathrm e}^{i \left (e x +d \right )}+i\right )}{4 a^{3} e}\) \(138\)

Input:

int(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d))^3,x,method=_RETURNVERBOSE)
 

Output:

1/32/e/a^3*(1/2*tan(1/2*e*x+1/2*d)^2-3*tan(1/2*e*x+1/2*d)-2/(1+tan(1/2*e*x 
+1/2*d))^2+8*ln(1+tan(1/2*e*x+1/2*d))+8/(1+tan(1/2*e*x+1/2*d)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.16 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {6 \, \cos \left (e x + d\right )^{2} - 4 \, {\left ({\left (\cos \left (e x + d\right ) + 1\right )} \sin \left (e x + d\right ) + \cos \left (e x + d\right ) + 1\right )} \log \left (\frac {1}{2} \, \cos \left (e x + d\right ) + \frac {1}{2}\right ) + 4 \, {\left ({\left (\cos \left (e x + d\right ) + 1\right )} \sin \left (e x + d\right ) + \cos \left (e x + d\right ) + 1\right )} \log \left (\sin \left (e x + d\right ) + 1\right ) + 2 \, \cos \left (e x + d\right ) - 2 \, \sin \left (e x + d\right ) - 3}{32 \, {\left (a^{3} e \cos \left (e x + d\right ) + a^{3} e + {\left (a^{3} e \cos \left (e x + d\right ) + a^{3} e\right )} \sin \left (e x + d\right )\right )}} \] Input:

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d))^3,x, algorithm="fricas")
 

Output:

1/32*(6*cos(e*x + d)^2 - 4*((cos(e*x + d) + 1)*sin(e*x + d) + cos(e*x + d) 
 + 1)*log(1/2*cos(e*x + d) + 1/2) + 4*((cos(e*x + d) + 1)*sin(e*x + d) + c 
os(e*x + d) + 1)*log(sin(e*x + d) + 1) + 2*cos(e*x + d) - 2*sin(e*x + d) - 
 3)/(a^3*e*cos(e*x + d) + a^3*e + (a^3*e*cos(e*x + d) + a^3*e)*sin(e*x + d 
))
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 423 vs. \(2 (112) = 224\).

Time = 3.02 (sec) , antiderivative size = 423, normalized size of antiderivative = 3.44 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\begin {cases} \frac {16 \log {\left (\tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 1 \right )} \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )}}{64 a^{3} e \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )} + 128 a^{3} e \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 64 a^{3} e} + \frac {32 \log {\left (\tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 1 \right )} \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )}}{64 a^{3} e \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )} + 128 a^{3} e \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 64 a^{3} e} + \frac {16 \log {\left (\tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 1 \right )}}{64 a^{3} e \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )} + 128 a^{3} e \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 64 a^{3} e} + \frac {\tan ^{4}{\left (\frac {d}{2} + \frac {e x}{2} \right )}}{64 a^{3} e \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )} + 128 a^{3} e \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 64 a^{3} e} - \frac {4 \tan ^{3}{\left (\frac {d}{2} + \frac {e x}{2} \right )}}{64 a^{3} e \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )} + 128 a^{3} e \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 64 a^{3} e} + \frac {32 \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )}}{64 a^{3} e \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )} + 128 a^{3} e \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 64 a^{3} e} + \frac {23}{64 a^{3} e \tan ^{2}{\left (\frac {d}{2} + \frac {e x}{2} \right )} + 128 a^{3} e \tan {\left (\frac {d}{2} + \frac {e x}{2} \right )} + 64 a^{3} e} & \text {for}\: e \neq 0 \\\frac {x}{\left (2 a \sin {\left (d \right )} + 2 a \cos {\left (d \right )} + 2 a\right )^{3}} & \text {otherwise} \end {cases} \] Input:

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d))**3,x)
 

Output:

Piecewise((16*log(tan(d/2 + e*x/2) + 1)*tan(d/2 + e*x/2)**2/(64*a**3*e*tan 
(d/2 + e*x/2)**2 + 128*a**3*e*tan(d/2 + e*x/2) + 64*a**3*e) + 32*log(tan(d 
/2 + e*x/2) + 1)*tan(d/2 + e*x/2)/(64*a**3*e*tan(d/2 + e*x/2)**2 + 128*a** 
3*e*tan(d/2 + e*x/2) + 64*a**3*e) + 16*log(tan(d/2 + e*x/2) + 1)/(64*a**3* 
e*tan(d/2 + e*x/2)**2 + 128*a**3*e*tan(d/2 + e*x/2) + 64*a**3*e) + tan(d/2 
 + e*x/2)**4/(64*a**3*e*tan(d/2 + e*x/2)**2 + 128*a**3*e*tan(d/2 + e*x/2) 
+ 64*a**3*e) - 4*tan(d/2 + e*x/2)**3/(64*a**3*e*tan(d/2 + e*x/2)**2 + 128* 
a**3*e*tan(d/2 + e*x/2) + 64*a**3*e) + 32*tan(d/2 + e*x/2)/(64*a**3*e*tan( 
d/2 + e*x/2)**2 + 128*a**3*e*tan(d/2 + e*x/2) + 64*a**3*e) + 23/(64*a**3*e 
*tan(d/2 + e*x/2)**2 + 128*a**3*e*tan(d/2 + e*x/2) + 64*a**3*e), Ne(e, 0)) 
, (x/(2*a*sin(d) + 2*a*cos(d) + 2*a)**3, True))
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.19 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {\frac {4 \, {\left (\frac {4 \, \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + 3\right )}}{a^{3} + \frac {2 \, a^{3} \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + \frac {a^{3} \sin \left (e x + d\right )^{2}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{2}}} - \frac {\frac {6 \, \sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} - \frac {\sin \left (e x + d\right )^{2}}{{\left (\cos \left (e x + d\right ) + 1\right )}^{2}}}{a^{3}} + \frac {16 \, \log \left (\frac {\sin \left (e x + d\right )}{\cos \left (e x + d\right ) + 1} + 1\right )}{a^{3}}}{64 \, e} \] Input:

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d))^3,x, algorithm="maxima")
 

Output:

1/64*(4*(4*sin(e*x + d)/(cos(e*x + d) + 1) + 3)/(a^3 + 2*a^3*sin(e*x + d)/ 
(cos(e*x + d) + 1) + a^3*sin(e*x + d)^2/(cos(e*x + d) + 1)^2) - (6*sin(e*x 
 + d)/(cos(e*x + d) + 1) - sin(e*x + d)^2/(cos(e*x + d) + 1)^2)/a^3 + 16*l 
og(sin(e*x + d)/(cos(e*x + d) + 1) + 1)/a^3)/e
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.83 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {\frac {16 \, \log \left ({\left | \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + 1 \right |}\right )}{a^{3}} - \frac {4 \, {\left (6 \, \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} + 8 \, \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + 3\right )}}{a^{3} {\left (\tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right ) + 1\right )}^{2}} + \frac {a^{3} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )^{2} - 6 \, a^{3} \tan \left (\frac {1}{2} \, e x + \frac {1}{2} \, d\right )}{a^{6}}}{64 \, e} \] Input:

integrate(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d))^3,x, algorithm="giac")
 

Output:

1/64*(16*log(abs(tan(1/2*e*x + 1/2*d) + 1))/a^3 - 4*(6*tan(1/2*e*x + 1/2*d 
)^2 + 8*tan(1/2*e*x + 1/2*d) + 3)/(a^3*(tan(1/2*e*x + 1/2*d) + 1)^2) + (a^ 
3*tan(1/2*e*x + 1/2*d)^2 - 6*a^3*tan(1/2*e*x + 1/2*d))/a^6)/e
 

Mupad [B] (verification not implemented)

Time = 15.43 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.73 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {{\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}^2}{64\,a^3\,e}+\frac {\ln \left (\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )+1\right )}{4\,a^3\,e}-\frac {3\,\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}{32\,a^3\,e}+\frac {\frac {\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )}{4}+\frac {3}{16}}{a^3\,e\,{\left (\mathrm {tan}\left (\frac {d}{2}+\frac {e\,x}{2}\right )+1\right )}^2} \] Input:

int(1/(2*a + 2*a*cos(d + e*x) + 2*a*sin(d + e*x))^3,x)
 

Output:

tan(d/2 + (e*x)/2)^2/(64*a^3*e) + log(tan(d/2 + (e*x)/2) + 1)/(4*a^3*e) - 
(3*tan(d/2 + (e*x)/2))/(32*a^3*e) + (tan(d/2 + (e*x)/2)/4 + 3/16)/(a^3*e*( 
tan(d/2 + (e*x)/2) + 1)^2)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.10 \[ \int \frac {1}{(2 a+2 a \cos (d+e x)+2 a \sin (d+e x))^3} \, dx=\frac {16 \,\mathrm {log}\left (\tan \left (\frac {e x}{2}+\frac {d}{2}\right )+1\right ) \tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{2}+32 \,\mathrm {log}\left (\tan \left (\frac {e x}{2}+\frac {d}{2}\right )+1\right ) \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+16 \,\mathrm {log}\left (\tan \left (\frac {e x}{2}+\frac {d}{2}\right )+1\right )+\tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{4}-4 \tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{3}-16 \tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{2}+7}{64 a^{3} e \left (\tan \left (\frac {e x}{2}+\frac {d}{2}\right )^{2}+2 \tan \left (\frac {e x}{2}+\frac {d}{2}\right )+1\right )} \] Input:

int(1/(2*a+2*a*cos(e*x+d)+2*a*sin(e*x+d))^3,x)
 

Output:

(16*log(tan((d + e*x)/2) + 1)*tan((d + e*x)/2)**2 + 32*log(tan((d + e*x)/2 
) + 1)*tan((d + e*x)/2) + 16*log(tan((d + e*x)/2) + 1) + tan((d + e*x)/2)* 
*4 - 4*tan((d + e*x)/2)**3 - 16*tan((d + e*x)/2)**2 + 7)/(64*a**3*e*(tan(( 
d + e*x)/2)**2 + 2*tan((d + e*x)/2) + 1))