\(\int \frac {a+b \tan (d+e x)}{(b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x))^{3/2}} \, dx\) [460]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 41, antiderivative size = 316 \[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx=-\frac {\left (a^2-b^2\right ) (b+a \tan (d+e x))}{2 \left (a^2+b^2\right ) e \left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}}-\frac {\left (a^4-6 a^2 b^2+b^4\right ) \log (b \cos (d+e x)+a \sin (d+e x)) (b+a \tan (d+e x))^3}{\left (a^2+b^2\right )^3 e \left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}}-\frac {4 b \left (a^2-b^2\right ) x \left (a b+a^2 \tan (d+e x)\right )^3}{a^2 \left (a^2+b^2\right )^3 \left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}}-\frac {b \left (3 a^2-b^2\right ) \left (a b+a^2 \tan (d+e x)\right )^3}{\left (a^2+b^2\right )^2 e \left (a^3 b+a^4 \tan (d+e x)\right ) \left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \] Output:

-1/2*(a^2-b^2)*(b+a*tan(e*x+d))/(a^2+b^2)/e/(b^2+2*a*b*tan(e*x+d)+a^2*tan( 
e*x+d)^2)^(3/2)-(a^4-6*a^2*b^2+b^4)*ln(b*cos(e*x+d)+a*sin(e*x+d))*(b+a*tan 
(e*x+d))^3/(a^2+b^2)^3/e/(b^2+2*a*b*tan(e*x+d)+a^2*tan(e*x+d)^2)^(3/2)-4*b 
*(a^2-b^2)*x*(a*b+a^2*tan(e*x+d))^3/a^2/(a^2+b^2)^3/(b^2+2*a*b*tan(e*x+d)+ 
a^2*tan(e*x+d)^2)^(3/2)-b*(3*a^2-b^2)*(a*b+a^2*tan(e*x+d))^3/(a^2+b^2)^2/e 
/(a^3*b+a^4*tan(e*x+d))/(b^2+2*a*b*tan(e*x+d)+a^2*tan(e*x+d)^2)^(3/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.31 (sec) , antiderivative size = 268, normalized size of antiderivative = 0.85 \[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx=\frac {(b+a \tan (d+e x))^3 \left (b \left (\frac {i \log (i-\tan (d+e x))}{(a-i b)^2}-\frac {i \log (i+\tan (d+e x))}{(a+i b)^2}+\frac {2 a \left (2 b \log (b+a \tan (d+e x))-\frac {a^2+b^2}{b+a \tan (d+e x)}\right )}{\left (a^2+b^2\right )^2}\right )+(a-b) (a+b) \left (\frac {\log (i-\tan (d+e x))}{(a-i b)^3}+\frac {\log (i+\tan (d+e x))}{(a+i b)^3}+\frac {a \left (-2 \left (a^2-3 b^2\right ) \log (b+a \tan (d+e x))-\frac {\left (a^2+b^2\right ) \left (a^2+5 b^2+4 a b \tan (d+e x)\right )}{(b+a \tan (d+e x))^2}\right )}{\left (a^2+b^2\right )^3}\right )\right )}{2 a e \left ((b+a \tan (d+e x))^2\right )^{3/2}} \] Input:

Integrate[(a + b*Tan[d + e*x])/(b^2 + 2*a*b*Tan[d + e*x] + a^2*Tan[d + e*x 
]^2)^(3/2),x]
 

Output:

((b + a*Tan[d + e*x])^3*(b*((I*Log[I - Tan[d + e*x]])/(a - I*b)^2 - (I*Log 
[I + Tan[d + e*x]])/(a + I*b)^2 + (2*a*(2*b*Log[b + a*Tan[d + e*x]] - (a^2 
 + b^2)/(b + a*Tan[d + e*x])))/(a^2 + b^2)^2) + (a - b)*(a + b)*(Log[I - T 
an[d + e*x]]/(a - I*b)^3 + Log[I + Tan[d + e*x]]/(a + I*b)^3 + (a*(-2*(a^2 
 - 3*b^2)*Log[b + a*Tan[d + e*x]] - ((a^2 + b^2)*(a^2 + 5*b^2 + 4*a*b*Tan[ 
d + e*x]))/(b + a*Tan[d + e*x])^2))/(a^2 + b^2)^3)))/(2*a*e*((b + a*Tan[d 
+ e*x])^2)^(3/2))
 

Rubi [A] (verified)

Time = 1.13 (sec) , antiderivative size = 235, normalized size of antiderivative = 0.74, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.293, Rules used = {3042, 4193, 27, 3042, 4012, 3042, 4012, 25, 3042, 4014, 3042, 4013}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \tan (d+e x)}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan (d+e x)}{\left (a^2 \tan (d+e x)^2+2 a b \tan (d+e x)+b^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4193

\(\displaystyle \frac {8 \left (a^2 \tan (d+e x)+a b\right )^3 \int \frac {a+b \tan (d+e x)}{8 \left (\tan (d+e x) a^2+b a\right )^3}dx}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \int \frac {a+b \tan (d+e x)}{\left (\tan (d+e x) a^2+b a\right )^3}dx}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \int \frac {a+b \tan (d+e x)}{\left (\tan (d+e x) a^2+b a\right )^3}dx}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {\int \frac {2 a^2 b-a \left (a^2-b^2\right ) \tan (d+e x)}{\left (\tan (d+e x) a^2+b a\right )^2}dx}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {\int \frac {2 a^2 b-a \left (a^2-b^2\right ) \tan (d+e x)}{\left (\tan (d+e x) a^2+b a\right )^2}dx}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 4012

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {\frac {\int -\frac {\left (a^2-3 b^2\right ) a^3+b \left (3 a^2-b^2\right ) \tan (d+e x) a^2}{\tan (d+e x) a^2+b a}dx}{a^2 \left (a^2+b^2\right )}-\frac {b \left (3 a^2-b^2\right )}{e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )}}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {-\frac {\int \frac {\left (a^2-3 b^2\right ) a^3+b \left (3 a^2-b^2\right ) \tan (d+e x) a^2}{\tan (d+e x) a^2+b a}dx}{a^2 \left (a^2+b^2\right )}-\frac {b \left (3 a^2-b^2\right )}{e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )}}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {-\frac {\int \frac {\left (a^2-3 b^2\right ) a^3+b \left (3 a^2-b^2\right ) \tan (d+e x) a^2}{\tan (d+e x) a^2+b a}dx}{a^2 \left (a^2+b^2\right )}-\frac {b \left (3 a^2-b^2\right )}{e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )}}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 4014

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {-\frac {\frac {a \left (a^4-6 a^2 b^2+b^4\right ) \int \frac {a^2-a b \tan (d+e x)}{\tan (d+e x) a^2+b a}dx}{a^2+b^2}+\frac {4 a^2 b x \left (a^2-b^2\right )}{a^2+b^2}}{a^2 \left (a^2+b^2\right )}-\frac {b \left (3 a^2-b^2\right )}{e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )}}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {-\frac {\frac {a \left (a^4-6 a^2 b^2+b^4\right ) \int \frac {a^2-a b \tan (d+e x)}{\tan (d+e x) a^2+b a}dx}{a^2+b^2}+\frac {4 a^2 b x \left (a^2-b^2\right )}{a^2+b^2}}{a^2 \left (a^2+b^2\right )}-\frac {b \left (3 a^2-b^2\right )}{e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )}}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

\(\Big \downarrow \) 4013

\(\displaystyle \frac {\left (a^2 \tan (d+e x)+a b\right )^3 \left (\frac {-\frac {b \left (3 a^2-b^2\right )}{e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )}-\frac {\frac {4 a^2 b x \left (a^2-b^2\right )}{a^2+b^2}+\frac {a \left (a^4-6 a^2 b^2+b^4\right ) \log (a \sin (d+e x)+b \cos (d+e x))}{e \left (a^2+b^2\right )}}{a^2 \left (a^2+b^2\right )}}{a^2 \left (a^2+b^2\right )}-\frac {a^2-b^2}{2 a e \left (a^2+b^2\right ) \left (a^2 \tan (d+e x)+a b\right )^2}\right )}{\left (a^2 \tan ^2(d+e x)+2 a b \tan (d+e x)+b^2\right )^{3/2}}\)

Input:

Int[(a + b*Tan[d + e*x])/(b^2 + 2*a*b*Tan[d + e*x] + a^2*Tan[d + e*x]^2)^( 
3/2),x]
 

Output:

((a*b + a^2*Tan[d + e*x])^3*(-1/2*(a^2 - b^2)/(a*(a^2 + b^2)*e*(a*b + a^2* 
Tan[d + e*x])^2) + (-(((4*a^2*b*(a^2 - b^2)*x)/(a^2 + b^2) + (a*(a^4 - 6*a 
^2*b^2 + b^4)*Log[b*Cos[d + e*x] + a*Sin[d + e*x]])/((a^2 + b^2)*e))/(a^2* 
(a^2 + b^2))) - (b*(3*a^2 - b^2))/((a^2 + b^2)*e*(a*b + a^2*Tan[d + e*x])) 
)/(a^2*(a^2 + b^2))))/(b^2 + 2*a*b*Tan[d + e*x] + a^2*Tan[d + e*x]^2)^(3/2 
)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4013
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)* 
(x_)]), x_Symbol] :> Simp[(c/(b*f))*Log[RemoveContent[a*Cos[e + f*x] + b*Si 
n[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]
 

rule 4014
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_. 
)*(x_)]), x_Symbol] :> Simp[(a*c + b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a 
*d)/(a^2 + b^2)   Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && N 
eQ[a*c + b*d, 0]
 

rule 4193
Int[((A_) + (B_.)*tan[(d_.) + (e_.)*(x_)])*((a_) + (b_.)*tan[(d_.) + (e_.)* 
(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_)]^2)^(n_), x_Symbol] :> Simp[(a + b*Tan 
[d + e*x] + c*Tan[d + e*x]^2)^n/(b + 2*c*Tan[d + e*x])^(2*n)   Int[(A + B*T 
an[d + e*x])*(b + 2*c*Tan[d + e*x])^(2*n), x], x] /; FreeQ[{a, b, c, d, e, 
A, B}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[n]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(619\) vs. \(2(306)=612\).

Time = 0.24 (sec) , antiderivative size = 620, normalized size of antiderivative = 1.96

method result size
derivativedivides \(\frac {\left (-a^{6}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{2} b^{4} \tan \left (e x +d \right )^{2}+2 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{5} b \tan \left (e x +d \right )-12 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{3} b^{3} \tan \left (e x +d \right )+2 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a \,b^{5} \tan \left (e x +d \right )-16 \arctan \left (\tan \left (e x +d \right )\right ) a^{4} b^{2} \tan \left (e x +d \right )+16 \arctan \left (\tan \left (e x +d \right )\right ) a^{2} b^{4} \tan \left (e x +d \right )-4 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{5} b \tan \left (e x +d \right )+24 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{3} b^{3} \tan \left (e x +d \right )-4 \ln \left (b +a \tan \left (e x +d \right )\right ) a \,b^{5} \tan \left (e x +d \right )-6 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{4} b^{2} \tan \left (e x +d \right )^{2}+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{2} b^{4} \tan \left (e x +d \right )^{2}-8 \arctan \left (\tan \left (e x +d \right )\right ) a^{5} b \tan \left (e x +d \right )^{2}+8 \arctan \left (\tan \left (e x +d \right )\right ) a^{3} b^{3} \tan \left (e x +d \right )^{2}+12 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{4} b^{2} \tan \left (e x +d \right )^{2}-7 a^{4} b^{2}-3 a^{2} b^{4}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{6} \tan \left (e x +d \right )^{2}+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{4} b^{2}-6 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{2} b^{4}-8 \arctan \left (\tan \left (e x +d \right )\right ) a^{3} b^{3}+8 \arctan \left (\tan \left (e x +d \right )\right ) a \,b^{5}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{4} b^{2}+12 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{2} b^{4}+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{6} \tan \left (e x +d \right )^{2}-6 a^{5} b \tan \left (e x +d \right )-4 a^{3} b^{3} \tan \left (e x +d \right )+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) b^{6}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) b^{6}+3 b^{6}+2 \tan \left (e x +d \right ) a \,b^{5}\right ) \left (b +a \tan \left (e x +d \right )\right )}{2 e \left (a^{2}+b^{2}\right )^{3} \left (b^{2}+2 a b \tan \left (e x +d \right )+a^{2} \tan \left (e x +d \right )^{2}\right )^{\frac {3}{2}}}\) \(620\)
default \(\frac {\left (-a^{6}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{2} b^{4} \tan \left (e x +d \right )^{2}+2 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{5} b \tan \left (e x +d \right )-12 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{3} b^{3} \tan \left (e x +d \right )+2 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a \,b^{5} \tan \left (e x +d \right )-16 \arctan \left (\tan \left (e x +d \right )\right ) a^{4} b^{2} \tan \left (e x +d \right )+16 \arctan \left (\tan \left (e x +d \right )\right ) a^{2} b^{4} \tan \left (e x +d \right )-4 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{5} b \tan \left (e x +d \right )+24 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{3} b^{3} \tan \left (e x +d \right )-4 \ln \left (b +a \tan \left (e x +d \right )\right ) a \,b^{5} \tan \left (e x +d \right )-6 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{4} b^{2} \tan \left (e x +d \right )^{2}+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{2} b^{4} \tan \left (e x +d \right )^{2}-8 \arctan \left (\tan \left (e x +d \right )\right ) a^{5} b \tan \left (e x +d \right )^{2}+8 \arctan \left (\tan \left (e x +d \right )\right ) a^{3} b^{3} \tan \left (e x +d \right )^{2}+12 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{4} b^{2} \tan \left (e x +d \right )^{2}-7 a^{4} b^{2}-3 a^{2} b^{4}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{6} \tan \left (e x +d \right )^{2}+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{4} b^{2}-6 \ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{2} b^{4}-8 \arctan \left (\tan \left (e x +d \right )\right ) a^{3} b^{3}+8 \arctan \left (\tan \left (e x +d \right )\right ) a \,b^{5}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{4} b^{2}+12 \ln \left (b +a \tan \left (e x +d \right )\right ) a^{2} b^{4}+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) a^{6} \tan \left (e x +d \right )^{2}-6 a^{5} b \tan \left (e x +d \right )-4 a^{3} b^{3} \tan \left (e x +d \right )+\ln \left (1+\tan \left (e x +d \right )^{2}\right ) b^{6}-2 \ln \left (b +a \tan \left (e x +d \right )\right ) b^{6}+3 b^{6}+2 \tan \left (e x +d \right ) a \,b^{5}\right ) \left (b +a \tan \left (e x +d \right )\right )}{2 e \left (a^{2}+b^{2}\right )^{3} \left (b^{2}+2 a b \tan \left (e x +d \right )+a^{2} \tan \left (e x +d \right )^{2}\right )^{\frac {3}{2}}}\) \(620\)
parts \(\text {Expression too large to display}\) \(927\)

Input:

int((a+b*tan(e*x+d))/(b^2+2*a*b*tan(e*x+d)+a^2*tan(e*x+d)^2)^(3/2),x,metho 
d=_RETURNVERBOSE)
 

Output:

1/2/e*(-a^6-2*ln(b+a*tan(e*x+d))*a^2*b^4*tan(e*x+d)^2+2*ln(1+tan(e*x+d)^2) 
*a^5*b*tan(e*x+d)-12*ln(1+tan(e*x+d)^2)*a^3*b^3*tan(e*x+d)+2*ln(1+tan(e*x+ 
d)^2)*a*b^5*tan(e*x+d)-16*arctan(tan(e*x+d))*a^4*b^2*tan(e*x+d)+16*arctan( 
tan(e*x+d))*a^2*b^4*tan(e*x+d)-4*ln(b+a*tan(e*x+d))*a^5*b*tan(e*x+d)+24*ln 
(b+a*tan(e*x+d))*a^3*b^3*tan(e*x+d)-4*ln(b+a*tan(e*x+d))*a*b^5*tan(e*x+d)- 
6*ln(1+tan(e*x+d)^2)*a^4*b^2*tan(e*x+d)^2+ln(1+tan(e*x+d)^2)*a^2*b^4*tan(e 
*x+d)^2-8*arctan(tan(e*x+d))*a^5*b*tan(e*x+d)^2+8*arctan(tan(e*x+d))*a^3*b 
^3*tan(e*x+d)^2+12*ln(b+a*tan(e*x+d))*a^4*b^2*tan(e*x+d)^2-7*a^4*b^2-3*a^2 
*b^4-2*ln(b+a*tan(e*x+d))*a^6*tan(e*x+d)^2+ln(1+tan(e*x+d)^2)*a^4*b^2-6*ln 
(1+tan(e*x+d)^2)*a^2*b^4-8*arctan(tan(e*x+d))*a^3*b^3+8*arctan(tan(e*x+d)) 
*a*b^5-2*ln(b+a*tan(e*x+d))*a^4*b^2+12*ln(b+a*tan(e*x+d))*a^2*b^4+ln(1+tan 
(e*x+d)^2)*a^6*tan(e*x+d)^2-6*a^5*b*tan(e*x+d)-4*a^3*b^3*tan(e*x+d)+ln(1+t 
an(e*x+d)^2)*b^6-2*ln(b+a*tan(e*x+d))*b^6+3*b^6+2*tan(e*x+d)*a*b^5)*(b+a*t 
an(e*x+d))/(a^2+b^2)^3/((b+a*tan(e*x+d))^2)^(3/2)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 355, normalized size of antiderivative = 1.12 \[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx=-\frac {a^{6} + 8 \, a^{4} b^{2} - 5 \, a^{2} b^{4} + 8 \, {\left (a^{3} b^{3} - a b^{5}\right )} e x + {\left (a^{6} - 8 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + 8 \, {\left (a^{5} b - a^{3} b^{3}\right )} e x\right )} \tan \left (e x + d\right )^{2} + {\left (a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6} + {\left (a^{6} - 6 \, a^{4} b^{2} + a^{2} b^{4}\right )} \tan \left (e x + d\right )^{2} + 2 \, {\left (a^{5} b - 6 \, a^{3} b^{3} + a b^{5}\right )} \tan \left (e x + d\right )\right )} \log \left (\frac {a^{2} \tan \left (e x + d\right )^{2} + 2 \, a b \tan \left (e x + d\right ) + b^{2}}{\tan \left (e x + d\right )^{2} + 1}\right ) + 4 \, {\left (2 \, a^{5} b - 3 \, a^{3} b^{3} + a b^{5} + 4 \, {\left (a^{4} b^{2} - a^{2} b^{4}\right )} e x\right )} \tan \left (e x + d\right )}{2 \, {\left ({\left (a^{8} + 3 \, a^{6} b^{2} + 3 \, a^{4} b^{4} + a^{2} b^{6}\right )} e \tan \left (e x + d\right )^{2} + 2 \, {\left (a^{7} b + 3 \, a^{5} b^{3} + 3 \, a^{3} b^{5} + a b^{7}\right )} e \tan \left (e x + d\right ) + {\left (a^{6} b^{2} + 3 \, a^{4} b^{4} + 3 \, a^{2} b^{6} + b^{8}\right )} e\right )}} \] Input:

integrate((a+b*tan(e*x+d))/(b^2+2*a*b*tan(e*x+d)+a^2*tan(e*x+d)^2)^(3/2),x 
, algorithm="fricas")
 

Output:

-1/2*(a^6 + 8*a^4*b^2 - 5*a^2*b^4 + 8*(a^3*b^3 - a*b^5)*e*x + (a^6 - 8*a^4 
*b^2 + 3*a^2*b^4 + 8*(a^5*b - a^3*b^3)*e*x)*tan(e*x + d)^2 + (a^4*b^2 - 6* 
a^2*b^4 + b^6 + (a^6 - 6*a^4*b^2 + a^2*b^4)*tan(e*x + d)^2 + 2*(a^5*b - 6* 
a^3*b^3 + a*b^5)*tan(e*x + d))*log((a^2*tan(e*x + d)^2 + 2*a*b*tan(e*x + d 
) + b^2)/(tan(e*x + d)^2 + 1)) + 4*(2*a^5*b - 3*a^3*b^3 + a*b^5 + 4*(a^4*b 
^2 - a^2*b^4)*e*x)*tan(e*x + d))/((a^8 + 3*a^6*b^2 + 3*a^4*b^4 + a^2*b^6)* 
e*tan(e*x + d)^2 + 2*(a^7*b + 3*a^5*b^3 + 3*a^3*b^5 + a*b^7)*e*tan(e*x + d 
) + (a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*e)
 

Sympy [F]

\[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx=\int \frac {a + b \tan {\left (d + e x \right )}}{\left (\left (a \tan {\left (d + e x \right )} + b\right )^{2}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((a+b*tan(e*x+d))/(b**2+2*a*b*tan(e*x+d)+a**2*tan(e*x+d)**2)**(3/ 
2),x)
 

Output:

Integral((a + b*tan(d + e*x))/((a*tan(d + e*x) + b)**2)**(3/2), x)
 

Maxima [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 498, normalized size of antiderivative = 1.58 \[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx=-\frac {{\left (\frac {2 \, {\left (3 \, a^{2} b - b^{3}\right )} {\left (e x + d\right )}}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {2 \, {\left (a^{3} - 3 \, a b^{2}\right )} \log \left (a \tan \left (e x + d\right ) + b\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {{\left (a^{3} - 3 \, a b^{2}\right )} \log \left (\tan \left (e x + d\right )^{2} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {4 \, a^{2} b \tan \left (e x + d\right ) + a^{3} + 5 \, a b^{2}}{a^{4} b^{2} + 2 \, a^{2} b^{4} + b^{6} + {\left (a^{6} + 2 \, a^{4} b^{2} + a^{2} b^{4}\right )} \tan \left (e x + d\right )^{2} + 2 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \tan \left (e x + d\right )}\right )} a + {\left (\frac {2 \, {\left (a^{3} - 3 \, a b^{2}\right )} {\left (e x + d\right )}}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} - \frac {2 \, {\left (3 \, a^{2} b - b^{3}\right )} \log \left (a \tan \left (e x + d\right ) + b\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {{\left (3 \, a^{2} b - b^{3}\right )} \log \left (\tan \left (e x + d\right )^{2} + 1\right )}{a^{6} + 3 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}} + \frac {a^{2} b - 3 \, b^{3} + 2 \, {\left (a^{3} - a b^{2}\right )} \tan \left (e x + d\right )}{a^{4} b^{2} + 2 \, a^{2} b^{4} + b^{6} + {\left (a^{6} + 2 \, a^{4} b^{2} + a^{2} b^{4}\right )} \tan \left (e x + d\right )^{2} + 2 \, {\left (a^{5} b + 2 \, a^{3} b^{3} + a b^{5}\right )} \tan \left (e x + d\right )}\right )} b}{2 \, e} \] Input:

integrate((a+b*tan(e*x+d))/(b^2+2*a*b*tan(e*x+d)+a^2*tan(e*x+d)^2)^(3/2),x 
, algorithm="maxima")
 

Output:

-1/2*((2*(3*a^2*b - b^3)*(e*x + d)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6) + 2 
*(a^3 - 3*a*b^2)*log(a*tan(e*x + d) + b)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^ 
6) - (a^3 - 3*a*b^2)*log(tan(e*x + d)^2 + 1)/(a^6 + 3*a^4*b^2 + 3*a^2*b^4 
+ b^6) + (4*a^2*b*tan(e*x + d) + a^3 + 5*a*b^2)/(a^4*b^2 + 2*a^2*b^4 + b^6 
 + (a^6 + 2*a^4*b^2 + a^2*b^4)*tan(e*x + d)^2 + 2*(a^5*b + 2*a^3*b^3 + a*b 
^5)*tan(e*x + d)))*a + (2*(a^3 - 3*a*b^2)*(e*x + d)/(a^6 + 3*a^4*b^2 + 3*a 
^2*b^4 + b^6) - 2*(3*a^2*b - b^3)*log(a*tan(e*x + d) + b)/(a^6 + 3*a^4*b^2 
 + 3*a^2*b^4 + b^6) + (3*a^2*b - b^3)*log(tan(e*x + d)^2 + 1)/(a^6 + 3*a^4 
*b^2 + 3*a^2*b^4 + b^6) + (a^2*b - 3*b^3 + 2*(a^3 - a*b^2)*tan(e*x + d))/( 
a^4*b^2 + 2*a^2*b^4 + b^6 + (a^6 + 2*a^4*b^2 + a^2*b^4)*tan(e*x + d)^2 + 2 
*(a^5*b + 2*a^3*b^3 + a*b^5)*tan(e*x + d)))*b)/e
 

Giac [A] (verification not implemented)

Time = 0.49 (sec) , antiderivative size = 398, normalized size of antiderivative = 1.26 \[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx=-\frac {4 \, {\left (a^{3} b - a b^{3}\right )} {\left (e x + d\right )}}{a^{6} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + 3 \, a^{4} b^{2} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + 3 \, a^{2} b^{4} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + b^{6} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right )} + \frac {{\left (a^{4} - 6 \, a^{2} b^{2} + b^{4}\right )} \log \left (\tan \left (e x + d\right )^{2} + 1\right )}{2 \, {\left (a^{6} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + 3 \, a^{4} b^{2} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + 3 \, a^{2} b^{4} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + b^{6} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right )\right )}} - \frac {{\left (a^{5} - 6 \, a^{3} b^{2} + a b^{4}\right )} \log \left ({\left | a \tan \left (e x + d\right ) + b \right |}\right )}{a^{7} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + 3 \, a^{5} b^{2} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + 3 \, a^{3} b^{4} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right ) + a b^{6} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right )} - \frac {a^{6} + 7 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - 3 \, b^{6} + 2 \, {\left (3 \, a^{5} b + 2 \, a^{3} b^{3} - a b^{5}\right )} \tan \left (e x + d\right )}{2 \, {\left (a^{2} + b^{2}\right )}^{3} {\left (a \tan \left (e x + d\right ) + b\right )}^{2} e \mathrm {sgn}\left (a \tan \left (e x + d\right ) + b\right )} \] Input:

integrate((a+b*tan(e*x+d))/(b^2+2*a*b*tan(e*x+d)+a^2*tan(e*x+d)^2)^(3/2),x 
, algorithm="giac")
 

Output:

-4*(a^3*b - a*b^3)*(e*x + d)/(a^6*e*sgn(a*tan(e*x + d) + b) + 3*a^4*b^2*e* 
sgn(a*tan(e*x + d) + b) + 3*a^2*b^4*e*sgn(a*tan(e*x + d) + b) + b^6*e*sgn( 
a*tan(e*x + d) + b)) + 1/2*(a^4 - 6*a^2*b^2 + b^4)*log(tan(e*x + d)^2 + 1) 
/(a^6*e*sgn(a*tan(e*x + d) + b) + 3*a^4*b^2*e*sgn(a*tan(e*x + d) + b) + 3* 
a^2*b^4*e*sgn(a*tan(e*x + d) + b) + b^6*e*sgn(a*tan(e*x + d) + b)) - (a^5 
- 6*a^3*b^2 + a*b^4)*log(abs(a*tan(e*x + d) + b))/(a^7*e*sgn(a*tan(e*x + d 
) + b) + 3*a^5*b^2*e*sgn(a*tan(e*x + d) + b) + 3*a^3*b^4*e*sgn(a*tan(e*x + 
 d) + b) + a*b^6*e*sgn(a*tan(e*x + d) + b)) - 1/2*(a^6 + 7*a^4*b^2 + 3*a^2 
*b^4 - 3*b^6 + 2*(3*a^5*b + 2*a^3*b^3 - a*b^5)*tan(e*x + d))/((a^2 + b^2)^ 
3*(a*tan(e*x + d) + b)^2*e*sgn(a*tan(e*x + d) + b))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx=\int \frac {a+b\,\mathrm {tan}\left (d+e\,x\right )}{{\left (a^2\,{\mathrm {tan}\left (d+e\,x\right )}^2+2\,a\,b\,\mathrm {tan}\left (d+e\,x\right )+b^2\right )}^{3/2}} \,d x \] Input:

int((a + b*tan(d + e*x))/(b^2 + a^2*tan(d + e*x)^2 + 2*a*b*tan(d + e*x))^( 
3/2),x)
 

Output:

int((a + b*tan(d + e*x))/(b^2 + a^2*tan(d + e*x)^2 + 2*a*b*tan(d + e*x))^( 
3/2), x)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 703, normalized size of antiderivative = 2.22 \[ \int \frac {a+b \tan (d+e x)}{\left (b^2+2 a b \tan (d+e x)+a^2 \tan ^2(d+e x)\right )^{3/2}} \, dx =\text {Too large to display} \] Input:

int((a+b*tan(e*x+d))/(b^2+2*a*b*tan(e*x+d)+a^2*tan(e*x+d)^2)^(3/2),x)
 

Output:

(log(tan(d + e*x)**2 + 1)*tan(d + e*x)**2*a**6 - 6*log(tan(d + e*x)**2 + 1 
)*tan(d + e*x)**2*a**4*b**2 + log(tan(d + e*x)**2 + 1)*tan(d + e*x)**2*a** 
2*b**4 + 2*log(tan(d + e*x)**2 + 1)*tan(d + e*x)*a**5*b - 12*log(tan(d + e 
*x)**2 + 1)*tan(d + e*x)*a**3*b**3 + 2*log(tan(d + e*x)**2 + 1)*tan(d + e* 
x)*a*b**5 + log(tan(d + e*x)**2 + 1)*a**4*b**2 - 6*log(tan(d + e*x)**2 + 1 
)*a**2*b**4 + log(tan(d + e*x)**2 + 1)*b**6 - 2*log(tan(d + e*x)*a + b)*ta 
n(d + e*x)**2*a**6 + 12*log(tan(d + e*x)*a + b)*tan(d + e*x)**2*a**4*b**2 
- 2*log(tan(d + e*x)*a + b)*tan(d + e*x)**2*a**2*b**4 - 4*log(tan(d + e*x) 
*a + b)*tan(d + e*x)*a**5*b + 24*log(tan(d + e*x)*a + b)*tan(d + e*x)*a**3 
*b**3 - 4*log(tan(d + e*x)*a + b)*tan(d + e*x)*a*b**5 - 2*log(tan(d + e*x) 
*a + b)*a**4*b**2 + 12*log(tan(d + e*x)*a + b)*a**2*b**4 - 2*log(tan(d + e 
*x)*a + b)*b**6 + 3*tan(d + e*x)**2*a**6 - 8*tan(d + e*x)**2*a**5*b*e*x + 
2*tan(d + e*x)**2*a**4*b**2 + 8*tan(d + e*x)**2*a**3*b**3*e*x - tan(d + e* 
x)**2*a**2*b**4 - 16*tan(d + e*x)*a**4*b**2*e*x + 16*tan(d + e*x)*a**2*b** 
4*e*x - a**6 - 4*a**4*b**2 - 8*a**3*b**3*e*x - a**2*b**4 + 8*a*b**5*e*x + 
2*b**6)/(2*e*(tan(d + e*x)**2*a**8 + 3*tan(d + e*x)**2*a**6*b**2 + 3*tan(d 
 + e*x)**2*a**4*b**4 + tan(d + e*x)**2*a**2*b**6 + 2*tan(d + e*x)*a**7*b + 
 6*tan(d + e*x)*a**5*b**3 + 6*tan(d + e*x)*a**3*b**5 + 2*tan(d + e*x)*a*b* 
*7 + a**6*b**2 + 3*a**4*b**4 + 3*a**2*b**6 + b**8))