\(\int \frac {\sin ^2(\frac {\sqrt {1-a x}}{\sqrt {1+a x}})}{1-a^2 x^2} \, dx\) [42]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 36, antiderivative size = 58 \[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\frac {\operatorname {CosIntegral}\left (\frac {2 \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a}-\frac {\log \left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a} \] Output:

1/2*Ci(2*(-a*x+1)^(1/2)/(a*x+1)^(1/2))/a-1/2*ln((-a*x+1)^(1/2)/(a*x+1)^(1/ 
2))/a
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.98 \[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\frac {\operatorname {CosIntegral}\left (\frac {2 \sqrt {1-a x}}{\sqrt {1+a x}}\right )}{2 a}-\frac {\log (1-a x)}{4 a}+\frac {\log (1+a x)}{4 a} \] Input:

Integrate[Sin[Sqrt[1 - a*x]/Sqrt[1 + a*x]]^2/(1 - a^2*x^2),x]
 

Output:

CosIntegral[(2*Sqrt[1 - a*x])/Sqrt[1 + a*x]]/(2*a) - Log[1 - a*x]/(4*a) + 
Log[1 + a*x]/(4*a)
 

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {7232, 3042, 3793, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )}{1-a^2 x^2} \, dx\)

\(\Big \downarrow \) 7232

\(\displaystyle -\frac {\int \frac {\sqrt {a x+1} \sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )}{\sqrt {1-a x}}d\frac {\sqrt {1-a x}}{\sqrt {a x+1}}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sqrt {a x+1} \sin \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )^2}{\sqrt {1-a x}}d\frac {\sqrt {1-a x}}{\sqrt {a x+1}}}{a}\)

\(\Big \downarrow \) 3793

\(\displaystyle -\frac {\int \left (\frac {\sqrt {a x+1}}{2 \sqrt {1-a x}}-\frac {\sqrt {a x+1} \cos \left (\frac {2 \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{2 \sqrt {1-a x}}\right )d\frac {\sqrt {1-a x}}{\sqrt {a x+1}}}{a}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {1}{2} \log \left (\frac {\sqrt {1-a x}}{\sqrt {a x+1}}\right )-\frac {1}{2} \operatorname {CosIntegral}\left (\frac {2 \sqrt {1-a x}}{\sqrt {a x+1}}\right )}{a}\)

Input:

Int[Sin[Sqrt[1 - a*x]/Sqrt[1 + a*x]]^2/(1 - a^2*x^2),x]
 

Output:

-((-1/2*CosIntegral[(2*Sqrt[1 - a*x])/Sqrt[1 + a*x]] + Log[Sqrt[1 - a*x]/S 
qrt[1 + a*x]]/2)/a)
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3793
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> In 
t[ExpandTrigReduce[(c + d*x)^m, Sin[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f 
, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1]))
 

rule 7232
Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.) 
*(x_)]])^(n_.)/((A_.) + (C_.)*(x_)^2), x_Symbol] :> Simp[2*e*(g/(C*(e*f - d 
*g)))   Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x]], 
x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && 
EqQ[e*f + d*g, 0] && IGtQ[n, 0]
 
Maple [F]

\[\int \frac {\sin \left (\frac {\sqrt {-a x +1}}{\sqrt {a x +1}}\right )^{2}}{-a^{2} x^{2}+1}d x\]

Input:

int(sin((-a*x+1)^(1/2)/(a*x+1)^(1/2))^2/(-a^2*x^2+1),x)
 

Output:

int(sin((-a*x+1)^(1/2)/(a*x+1)^(1/2))^2/(-a^2*x^2+1),x)
 

Fricas [F]

\[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\int { -\frac {\sin \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right )^{2}}{a^{2} x^{2} - 1} \,d x } \] Input:

integrate(sin((-a*x+1)^(1/2)/(a*x+1)^(1/2))^2/(-a^2*x^2+1),x, algorithm="f 
ricas")
 

Output:

integral((cos(sqrt(-a*x + 1)/sqrt(a*x + 1))^2 - 1)/(a^2*x^2 - 1), x)
 

Sympy [F]

\[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=- \int \frac {\sin ^{2}{\left (\frac {\sqrt {- a x + 1}}{\sqrt {a x + 1}} \right )}}{a^{2} x^{2} - 1}\, dx \] Input:

integrate(sin((-a*x+1)**(1/2)/(a*x+1)**(1/2))**2/(-a**2*x**2+1),x)
 

Output:

-Integral(sin(sqrt(-a*x + 1)/sqrt(a*x + 1))**2/(a**2*x**2 - 1), x)
 

Maxima [F]

\[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\int { -\frac {\sin \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right )^{2}}{a^{2} x^{2} - 1} \,d x } \] Input:

integrate(sin((-a*x+1)^(1/2)/(a*x+1)^(1/2))^2/(-a^2*x^2+1),x, algorithm="m 
axima")
 

Output:

1/4*(4*a*integrate(1/4*cos(2*sqrt(-a*x + 1)/sqrt(a*x + 1))/(a^2*x^2 - 1), 
x) + 4*a*integrate(1/4*cos(2*sqrt(-a*x + 1)/sqrt(a*x + 1))/((a^2*x^2 - 1)* 
cos(2*sqrt(-a*x + 1)/sqrt(a*x + 1))^2 + (a^2*x^2 - 1)*sin(2*sqrt(-a*x + 1) 
/sqrt(a*x + 1))^2), x) + log(a*x + 1) - log(a*x - 1))/a
 

Giac [F]

\[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=\int { -\frac {\sin \left (\frac {\sqrt {-a x + 1}}{\sqrt {a x + 1}}\right )^{2}}{a^{2} x^{2} - 1} \,d x } \] Input:

integrate(sin((-a*x+1)^(1/2)/(a*x+1)^(1/2))^2/(-a^2*x^2+1),x, algorithm="g 
iac")
 

Output:

integrate(-sin(sqrt(-a*x + 1)/sqrt(a*x + 1))^2/(a^2*x^2 - 1), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=-\int \frac {{\sin \left (\frac {\sqrt {1-a\,x}}{\sqrt {a\,x+1}}\right )}^2}{a^2\,x^2-1} \,d x \] Input:

int(-sin((1 - a*x)^(1/2)/(a*x + 1)^(1/2))^2/(a^2*x^2 - 1),x)
 

Output:

-int(sin((1 - a*x)^(1/2)/(a*x + 1)^(1/2))^2/(a^2*x^2 - 1), x)
 

Reduce [F]

\[ \int \frac {\sin ^2\left (\frac {\sqrt {1-a x}}{\sqrt {1+a x}}\right )}{1-a^2 x^2} \, dx=-\left (\int \frac {\sin \left (\frac {\sqrt {-a x +1}}{\sqrt {a x +1}}\right )^{2}}{a^{2} x^{2}-1}d x \right ) \] Input:

int(sin((-a*x+1)^(1/2)/(a*x+1)^(1/2))^2/(-a^2*x^2+1),x)
 

Output:

 - int(sin(sqrt( - a*x + 1)/sqrt(a*x + 1))**2/(a**2*x**2 - 1),x)