\(\int (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}) \, dx\) [874]

Optimal result
Mathematica [A] (verified)
Rubi [F]
Maple [A] (verified)
Fricas [F(-2)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 74, antiderivative size = 26 \[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\frac {2 x^2 \sqrt {x^3+3 \sin (a+b x)}}{3 b} \] Output:

2/3*x^2*(x^3+3*sin(b*x+a))^(1/2)/b
 

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 26, normalized size of antiderivative = 1.00 \[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\frac {2 x^2 \sqrt {x^3+3 \sin (a+b x)}}{3 b} \] Input:

Integrate[x^4/(b*Sqrt[x^3 + 3*Sin[a + b*x]]) + (x^2*Cos[a + b*x])/Sqrt[x^3 
 + 3*Sin[a + b*x]] + (4*x*Sqrt[x^3 + 3*Sin[a + b*x]])/(3*b),x]
 

Output:

(2*x^2*Sqrt[x^3 + 3*Sin[a + b*x]])/(3*b)
 

Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (\frac {4 x \sqrt {3 \sin (a+b x)+x^3}}{3 b}+\frac {x^4}{b \sqrt {3 \sin (a+b x)+x^3}}+\frac {x^2 \cos (a+b x)}{\sqrt {3 \sin (a+b x)+x^3}}\right ) \, dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {4 \int x \sqrt {x^3+3 \sin (a+b x)}dx}{3 b}+\frac {\int \frac {x^4}{\sqrt {x^3+3 \sin (a+b x)}}dx}{b}+\int \frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}dx\)

Input:

Int[x^4/(b*Sqrt[x^3 + 3*Sin[a + b*x]]) + (x^2*Cos[a + b*x])/Sqrt[x^3 + 3*S 
in[a + b*x]] + (4*x*Sqrt[x^3 + 3*Sin[a + b*x]])/(3*b),x]
 

Output:

$Aborted
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 
Maple [A] (verified)

Time = 0.95 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.08

method result size
risch \(\frac {\sqrt {2 x^{3}+6 \sin \left (b x +a \right )}\, \sqrt {2}\, x^{2}}{3 b}\) \(28\)

Input:

int(x^4/b/(x^3+3*sin(b*x+a))^(1/2)+x^2*cos(b*x+a)/(x^3+3*sin(b*x+a))^(1/2) 
+4/3*x*(x^3+3*sin(b*x+a))^(1/2)/b,x,method=_RETURNVERBOSE)
 

Output:

1/3*(2*x^3+6*sin(b*x+a))^(1/2)/b*2^(1/2)*x^2
 

Fricas [F(-2)]

Exception generated. \[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x^4/b/(x^3+3*sin(b*x+a))^(1/2)+x^2*cos(b*x+a)/(x^3+3*sin(b*x+a)) 
^(1/2)+4/3*x*(x^3+3*sin(b*x+a))^(1/2)/b,x, algorithm="fricas")
 

Output:

Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (has polynomial part)
 

Sympy [F]

\[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\frac {\int \frac {7 x^{4}}{\sqrt {x^{3} + 3 \sin {\left (a + b x \right )}}}\, dx + \int \frac {12 x \sin {\left (a + b x \right )}}{\sqrt {x^{3} + 3 \sin {\left (a + b x \right )}}}\, dx + \int \frac {3 b x^{2} \cos {\left (a + b x \right )}}{\sqrt {x^{3} + 3 \sin {\left (a + b x \right )}}}\, dx}{3 b} \] Input:

integrate(x**4/b/(x**3+3*sin(b*x+a))**(1/2)+x**2*cos(b*x+a)/(x**3+3*sin(b* 
x+a))**(1/2)+4/3*x*(x**3+3*sin(b*x+a))**(1/2)/b,x)
 

Output:

(Integral(7*x**4/sqrt(x**3 + 3*sin(a + b*x)), x) + Integral(12*x*sin(a + b 
*x)/sqrt(x**3 + 3*sin(a + b*x)), x) + Integral(3*b*x**2*cos(a + b*x)/sqrt( 
x**3 + 3*sin(a + b*x)), x))/(3*b)
 

Maxima [F]

\[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\int { \frac {x^{4}}{\sqrt {x^{3} + 3 \, \sin \left (b x + a\right )} b} + \frac {x^{2} \cos \left (b x + a\right )}{\sqrt {x^{3} + 3 \, \sin \left (b x + a\right )}} + \frac {4 \, \sqrt {x^{3} + 3 \, \sin \left (b x + a\right )} x}{3 \, b} \,d x } \] Input:

integrate(x^4/b/(x^3+3*sin(b*x+a))^(1/2)+x^2*cos(b*x+a)/(x^3+3*sin(b*x+a)) 
^(1/2)+4/3*x*(x^3+3*sin(b*x+a))^(1/2)/b,x, algorithm="maxima")
 

Output:

integrate(x^4/(sqrt(x^3 + 3*sin(b*x + a))*b) + x^2*cos(b*x + a)/sqrt(x^3 + 
 3*sin(b*x + a)) + 4/3*sqrt(x^3 + 3*sin(b*x + a))*x/b, x)
 

Giac [F]

\[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\int { \frac {x^{4}}{\sqrt {x^{3} + 3 \, \sin \left (b x + a\right )} b} + \frac {x^{2} \cos \left (b x + a\right )}{\sqrt {x^{3} + 3 \, \sin \left (b x + a\right )}} + \frac {4 \, \sqrt {x^{3} + 3 \, \sin \left (b x + a\right )} x}{3 \, b} \,d x } \] Input:

integrate(x^4/b/(x^3+3*sin(b*x+a))^(1/2)+x^2*cos(b*x+a)/(x^3+3*sin(b*x+a)) 
^(1/2)+4/3*x*(x^3+3*sin(b*x+a))^(1/2)/b,x, algorithm="giac")
 

Output:

integrate(x^4/(sqrt(x^3 + 3*sin(b*x + a))*b) + x^2*cos(b*x + a)/sqrt(x^3 + 
 3*sin(b*x + a)) + 4/3*sqrt(x^3 + 3*sin(b*x + a))*x/b, x)
 

Mupad [B] (verification not implemented)

Time = 16.92 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.85 \[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\frac {2\,x^2\,\sqrt {3\,\sin \left (a+b\,x\right )+x^3}}{3\,b} \] Input:

int(x^4/(b*(3*sin(a + b*x) + x^3)^(1/2)) + (x^2*cos(a + b*x))/(3*sin(a + b 
*x) + x^3)^(1/2) + (4*x*(3*sin(a + b*x) + x^3)^(1/2))/(3*b),x)
 

Output:

(2*x^2*(3*sin(a + b*x) + x^3)^(1/2))/(3*b)
 

Reduce [F]

\[ \int \left (\frac {x^4}{b \sqrt {x^3+3 \sin (a+b x)}}+\frac {x^2 \cos (a+b x)}{\sqrt {x^3+3 \sin (a+b x)}}+\frac {4 x \sqrt {x^3+3 \sin (a+b x)}}{3 b}\right ) \, dx=\frac {7 \left (\int \frac {x^{4}}{\sqrt {3 \sin \left (b x +a \right )+x^{3}}}d x \right )+3 \left (\int \frac {\cos \left (b x +a \right ) x^{2}}{\sqrt {3 \sin \left (b x +a \right )+x^{3}}}d x \right ) b +12 \left (\int \frac {\sin \left (b x +a \right ) x}{\sqrt {3 \sin \left (b x +a \right )+x^{3}}}d x \right )}{3 b} \] Input:

int(x^4/b/(x^3+3*sin(b*x+a))^(1/2)+x^2*cos(b*x+a)/(x^3+3*sin(b*x+a))^(1/2) 
+4/3*x*(x^3+3*sin(b*x+a))^(1/2)/b,x)
 

Output:

(7*int(x**4/sqrt(3*sin(a + b*x) + x**3),x) + 3*int((cos(a + b*x)*x**2)/sqr 
t(3*sin(a + b*x) + x**3),x)*b + 12*int((sin(a + b*x)*x)/sqrt(3*sin(a + b*x 
) + x**3),x))/(3*b)