\(\int \sec ^2(c+b x) \sin (a+b x) \, dx\) [150]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 15, antiderivative size = 34 \[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=\frac {\cos (a-c) \sec (c+b x)}{b}+\frac {\text {arctanh}(\sin (c+b x)) \sin (a-c)}{b} \] Output:

cos(a-c)*sec(b*x+c)/b+arctanh(sin(b*x+c))*sin(a-c)/b
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.07 (sec) , antiderivative size = 88, normalized size of antiderivative = 2.59 \[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=\frac {\cos (a-c) \sec (c+b x)}{b}-\frac {2 i \arctan \left (\frac {(i \cos (c)+\sin (c)) \left (\cos \left (\frac {b x}{2}\right ) \sin (c)+\cos (c) \sin \left (\frac {b x}{2}\right )\right )}{\cos (c) \cos \left (\frac {b x}{2}\right )-i \cos \left (\frac {b x}{2}\right ) \sin (c)}\right ) \sin (a-c)}{b} \] Input:

Integrate[Sec[c + b*x]^2*Sin[a + b*x],x]
 

Output:

(Cos[a - c]*Sec[c + b*x])/b - ((2*I)*ArcTan[((I*Cos[c] + Sin[c])*(Cos[(b*x 
)/2]*Sin[c] + Cos[c]*Sin[(b*x)/2]))/(Cos[c]*Cos[(b*x)/2] - I*Cos[(b*x)/2]* 
Sin[c])]*Sin[a - c])/b
 

Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5091, 3042, 3086, 24, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin (a+b x) \sec ^2(b x+c) \, dx\)

\(\Big \downarrow \) 5091

\(\displaystyle \sin (a-c) \int \sec (c+b x)dx+\cos (a-c) \int \sec (c+b x) \tan (c+b x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sin (a-c) \int \csc \left (c+b x+\frac {\pi }{2}\right )dx+\cos (a-c) \int \sec (c+b x) \tan (c+b x)dx\)

\(\Big \downarrow \) 3086

\(\displaystyle \frac {\cos (a-c) \int 1d\sec (c+b x)}{b}+\sin (a-c) \int \csc \left (c+b x+\frac {\pi }{2}\right )dx\)

\(\Big \downarrow \) 24

\(\displaystyle \sin (a-c) \int \csc \left (c+b x+\frac {\pi }{2}\right )dx+\frac {\cos (a-c) \sec (b x+c)}{b}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\sin (a-c) \text {arctanh}(\sin (b x+c))}{b}+\frac {\cos (a-c) \sec (b x+c)}{b}\)

Input:

Int[Sec[c + b*x]^2*Sin[a + b*x],x]
 

Output:

(Cos[a - c]*Sec[c + b*x])/b + (ArcTanh[Sin[c + b*x]]*Sin[a - c])/b
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3086
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_.), x_Symbol] :> Simp[a/f   Subst[Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2 
), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2 
] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 5091
Int[Sec[w_]^(n_.)*Sin[v_], x_Symbol] :> Simp[Cos[v - w]   Int[Tan[w]*Sec[w] 
^(n - 1), x], x] + Simp[Sin[v - w]   Int[Sec[w]^(n - 1), x], x] /; GtQ[n, 0 
] && FreeQ[v - w, x] && NeQ[w, v]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.52 (sec) , antiderivative size = 115, normalized size of antiderivative = 3.38

method result size
risch \(\frac {{\mathrm e}^{i \left (b x +3 a \right )}+{\mathrm e}^{i \left (b x +a +2 c \right )}}{b \left ({\mathrm e}^{2 i \left (b x +a +c \right )}+{\mathrm e}^{2 i a}\right )}+\frac {\ln \left ({\mathrm e}^{i \left (b x +a \right )}+i {\mathrm e}^{i \left (a -c \right )}\right ) \sin \left (a -c \right )}{b}-\frac {\ln \left ({\mathrm e}^{i \left (b x +a \right )}-i {\mathrm e}^{i \left (a -c \right )}\right ) \sin \left (a -c \right )}{b}\) \(115\)
default \(\frac {\frac {4 \left (-2 \cos \left (a \right ) \sin \left (c \right )+2 \sin \left (a \right ) \cos \left (c \right )\right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )+8 \cos \left (a \right ) \cos \left (c \right )+8 \sin \left (a \right ) \sin \left (c \right )}{\left (-4 \cos \left (c \right )^{2} \sin \left (a \right )^{2}-4 \cos \left (a \right )^{2} \cos \left (c \right )^{2}-4 \sin \left (a \right )^{2} \sin \left (c \right )^{2}-4 \sin \left (c \right )^{2} \cos \left (a \right )^{2}\right ) \left (\cos \left (c \right ) \cos \left (a \right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}+\sin \left (c \right ) \sin \left (a \right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-2 \cos \left (c \right ) \sin \left (a \right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )+2 \sin \left (c \right ) \cos \left (a \right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )-\cos \left (a \right ) \cos \left (c \right )-\sin \left (a \right ) \sin \left (c \right )\right )}+\frac {4 \left (-2 \cos \left (a \right ) \sin \left (c \right )+2 \sin \left (a \right ) \cos \left (c \right )\right ) \arctan \left (\frac {2 \left (\cos \left (a \right ) \cos \left (c \right )+\sin \left (a \right ) \sin \left (c \right )\right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )-2 \sin \left (a \right ) \cos \left (c \right )+2 \cos \left (a \right ) \sin \left (c \right )}{2 \sqrt {-\cos \left (c \right )^{2} \sin \left (a \right )^{2}-\cos \left (a \right )^{2} \cos \left (c \right )^{2}-\sin \left (a \right )^{2} \sin \left (c \right )^{2}-\sin \left (c \right )^{2} \cos \left (a \right )^{2}}}\right )}{\left (-4 \cos \left (c \right )^{2} \sin \left (a \right )^{2}-4 \cos \left (a \right )^{2} \cos \left (c \right )^{2}-4 \sin \left (a \right )^{2} \sin \left (c \right )^{2}-4 \sin \left (c \right )^{2} \cos \left (a \right )^{2}\right ) \sqrt {-\cos \left (c \right )^{2} \sin \left (a \right )^{2}-\cos \left (a \right )^{2} \cos \left (c \right )^{2}-\sin \left (a \right )^{2} \sin \left (c \right )^{2}-\sin \left (c \right )^{2} \cos \left (a \right )^{2}}}}{b}\) \(346\)

Input:

int(sec(b*x+c)^2*sin(b*x+a),x,method=_RETURNVERBOSE)
 

Output:

1/b/(exp(2*I*(b*x+a+c))+exp(2*I*a))*(exp(I*(b*x+3*a))+exp(I*(b*x+a+2*c)))+ 
ln(exp(I*(b*x+a))+I*exp(I*(a-c)))/b*sin(a-c)-ln(exp(I*(b*x+a))-I*exp(I*(a- 
c)))/b*sin(a-c)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 69 vs. \(2 (34) = 68\).

Time = 0.08 (sec) , antiderivative size = 69, normalized size of antiderivative = 2.03 \[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=-\frac {\cos \left (b x + c\right ) \log \left (\sin \left (b x + c\right ) + 1\right ) \sin \left (-a + c\right ) - \cos \left (b x + c\right ) \log \left (-\sin \left (b x + c\right ) + 1\right ) \sin \left (-a + c\right ) - 2 \, \cos \left (-a + c\right )}{2 \, b \cos \left (b x + c\right )} \] Input:

integrate(sec(b*x+c)^2*sin(b*x+a),x, algorithm="fricas")
 

Output:

-1/2*(cos(b*x + c)*log(sin(b*x + c) + 1)*sin(-a + c) - cos(b*x + c)*log(-s 
in(b*x + c) + 1)*sin(-a + c) - 2*cos(-a + c))/(b*cos(b*x + c))
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1448 vs. \(2 (27) = 54\).

Time = 95.38 (sec) , antiderivative size = 5545, normalized size of antiderivative = 163.09 \[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=\text {Too large to display} \] Input:

integrate(sec(b*x+c)**2*sin(b*x+a),x)
 

Output:

Piecewise((log(tan(b*x/2))/b, Eq(c, -pi/2) | Eq(c, pi/2)), (0, Eq(b, 0)), 
(-2*log(tan(b*x/2) - tan(c/2)/(tan(c/2) - 1) - 1/(tan(c/2) - 1))*tan(c/2)* 
*3*tan(b*x/2)**2/(b*tan(c/2)**4*tan(b*x/2)**2 - b*tan(c/2)**4 - 4*b*tan(c/ 
2)**3*tan(b*x/2) - 4*b*tan(c/2)*tan(b*x/2) - b*tan(b*x/2)**2 + b) + 2*log( 
tan(b*x/2) - tan(c/2)/(tan(c/2) - 1) - 1/(tan(c/2) - 1))*tan(c/2)**3/(b*ta 
n(c/2)**4*tan(b*x/2)**2 - b*tan(c/2)**4 - 4*b*tan(c/2)**3*tan(b*x/2) - 4*b 
*tan(c/2)*tan(b*x/2) - b*tan(b*x/2)**2 + b) + 8*log(tan(b*x/2) - tan(c/2)/ 
(tan(c/2) - 1) - 1/(tan(c/2) - 1))*tan(c/2)**2*tan(b*x/2)/(b*tan(c/2)**4*t 
an(b*x/2)**2 - b*tan(c/2)**4 - 4*b*tan(c/2)**3*tan(b*x/2) - 4*b*tan(c/2)*t 
an(b*x/2) - b*tan(b*x/2)**2 + b) + 2*log(tan(b*x/2) - tan(c/2)/(tan(c/2) - 
 1) - 1/(tan(c/2) - 1))*tan(c/2)*tan(b*x/2)**2/(b*tan(c/2)**4*tan(b*x/2)** 
2 - b*tan(c/2)**4 - 4*b*tan(c/2)**3*tan(b*x/2) - 4*b*tan(c/2)*tan(b*x/2) - 
 b*tan(b*x/2)**2 + b) - 2*log(tan(b*x/2) - tan(c/2)/(tan(c/2) - 1) - 1/(ta 
n(c/2) - 1))*tan(c/2)/(b*tan(c/2)**4*tan(b*x/2)**2 - b*tan(c/2)**4 - 4*b*t 
an(c/2)**3*tan(b*x/2) - 4*b*tan(c/2)*tan(b*x/2) - b*tan(b*x/2)**2 + b) + 2 
*log(tan(b*x/2) + tan(c/2)/(tan(c/2) + 1) - 1/(tan(c/2) + 1))*tan(c/2)**3* 
tan(b*x/2)**2/(b*tan(c/2)**4*tan(b*x/2)**2 - b*tan(c/2)**4 - 4*b*tan(c/2)* 
*3*tan(b*x/2) - 4*b*tan(c/2)*tan(b*x/2) - b*tan(b*x/2)**2 + b) - 2*log(tan 
(b*x/2) + tan(c/2)/(tan(c/2) + 1) - 1/(tan(c/2) + 1))*tan(c/2)**3/(b*tan(c 
/2)**4*tan(b*x/2)**2 - b*tan(c/2)**4 - 4*b*tan(c/2)**3*tan(b*x/2) - 4*b...
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 387 vs. \(2 (34) = 68\).

Time = 0.18 (sec) , antiderivative size = 387, normalized size of antiderivative = 11.38 \[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=\frac {2 \, {\left (\cos \left (b x + 2 \, a\right ) + \cos \left (b x + 2 \, c\right )\right )} \cos \left (2 \, b x + a + 2 \, c\right ) + 2 \, \cos \left (b x + 2 \, a\right ) \cos \left (a\right ) + 2 \, \cos \left (b x + 2 \, c\right ) \cos \left (a\right ) + {\left (\cos \left (2 \, b x + a + 2 \, c\right )^{2} \sin \left (-a + c\right ) + 2 \, \cos \left (2 \, b x + a + 2 \, c\right ) \cos \left (a\right ) \sin \left (-a + c\right ) + \sin \left (2 \, b x + a + 2 \, c\right )^{2} \sin \left (-a + c\right ) + 2 \, \sin \left (2 \, b x + a + 2 \, c\right ) \sin \left (a\right ) \sin \left (-a + c\right ) + {\left (\cos \left (a\right )^{2} + \sin \left (a\right )^{2}\right )} \sin \left (-a + c\right )\right )} \log \left (\frac {\cos \left (b x + 2 \, c\right )^{2} + \cos \left (c\right )^{2} - 2 \, \cos \left (c\right ) \sin \left (b x + 2 \, c\right ) + \sin \left (b x + 2 \, c\right )^{2} + 2 \, \cos \left (b x + 2 \, c\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}}{\cos \left (b x + 2 \, c\right )^{2} + \cos \left (c\right )^{2} + 2 \, \cos \left (c\right ) \sin \left (b x + 2 \, c\right ) + \sin \left (b x + 2 \, c\right )^{2} - 2 \, \cos \left (b x + 2 \, c\right ) \sin \left (c\right ) + \sin \left (c\right )^{2}}\right ) + 2 \, {\left (\sin \left (b x + 2 \, a\right ) + \sin \left (b x + 2 \, c\right )\right )} \sin \left (2 \, b x + a + 2 \, c\right ) + 2 \, \sin \left (b x + 2 \, a\right ) \sin \left (a\right ) + 2 \, \sin \left (b x + 2 \, c\right ) \sin \left (a\right )}{2 \, {\left (b \cos \left (2 \, b x + a + 2 \, c\right )^{2} + 2 \, b \cos \left (2 \, b x + a + 2 \, c\right ) \cos \left (a\right ) + b \sin \left (2 \, b x + a + 2 \, c\right )^{2} + 2 \, b \sin \left (2 \, b x + a + 2 \, c\right ) \sin \left (a\right ) + {\left (\cos \left (a\right )^{2} + \sin \left (a\right )^{2}\right )} b\right )}} \] Input:

integrate(sec(b*x+c)^2*sin(b*x+a),x, algorithm="maxima")
 

Output:

1/2*(2*(cos(b*x + 2*a) + cos(b*x + 2*c))*cos(2*b*x + a + 2*c) + 2*cos(b*x 
+ 2*a)*cos(a) + 2*cos(b*x + 2*c)*cos(a) + (cos(2*b*x + a + 2*c)^2*sin(-a + 
 c) + 2*cos(2*b*x + a + 2*c)*cos(a)*sin(-a + c) + sin(2*b*x + a + 2*c)^2*s 
in(-a + c) + 2*sin(2*b*x + a + 2*c)*sin(a)*sin(-a + c) + (cos(a)^2 + sin(a 
)^2)*sin(-a + c))*log((cos(b*x + 2*c)^2 + cos(c)^2 - 2*cos(c)*sin(b*x + 2* 
c) + sin(b*x + 2*c)^2 + 2*cos(b*x + 2*c)*sin(c) + sin(c)^2)/(cos(b*x + 2*c 
)^2 + cos(c)^2 + 2*cos(c)*sin(b*x + 2*c) + sin(b*x + 2*c)^2 - 2*cos(b*x + 
2*c)*sin(c) + sin(c)^2)) + 2*(sin(b*x + 2*a) + sin(b*x + 2*c))*sin(2*b*x + 
 a + 2*c) + 2*sin(b*x + 2*a)*sin(a) + 2*sin(b*x + 2*c)*sin(a))/(b*cos(2*b* 
x + a + 2*c)^2 + 2*b*cos(2*b*x + a + 2*c)*cos(a) + b*sin(2*b*x + a + 2*c)^ 
2 + 2*b*sin(2*b*x + a + 2*c)*sin(a) + (cos(a)^2 + sin(a)^2)*b)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 248 vs. \(2 (34) = 68\).

Time = 0.15 (sec) , antiderivative size = 248, normalized size of antiderivative = 7.29 \[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=\frac {2 \, {\left (\frac {{\left (\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right ) - \tan \left (\frac {1}{2} \, a\right ) \tan \left (\frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, a\right ) - \tan \left (\frac {1}{2} \, c\right )\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, a\right )^{2} + \tan \left (\frac {1}{2} \, c\right )^{2} + 1} - \frac {{\left (\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right ) - \tan \left (\frac {1}{2} \, a\right ) \tan \left (\frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, a\right ) - \tan \left (\frac {1}{2} \, c\right )\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, a\right )^{2} + \tan \left (\frac {1}{2} \, c\right )^{2} + 1} - \frac {\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} - \tan \left (\frac {1}{2} \, a\right )^{2} + 4 \, \tan \left (\frac {1}{2} \, a\right ) \tan \left (\frac {1}{2} \, c\right ) - \tan \left (\frac {1}{2} \, c\right )^{2} + 1}{{\left (\tan \left (\frac {1}{2} \, a\right )^{2} \tan \left (\frac {1}{2} \, c\right )^{2} + \tan \left (\frac {1}{2} \, a\right )^{2} + \tan \left (\frac {1}{2} \, c\right )^{2} + 1\right )} {\left (\tan \left (\frac {1}{2} \, b x + \frac {1}{2} \, c\right )^{2} - 1\right )}}\right )}}{b} \] Input:

integrate(sec(b*x+c)^2*sin(b*x+a),x, algorithm="giac")
 

Output:

2*((tan(1/2*a)^2*tan(1/2*c) - tan(1/2*a)*tan(1/2*c)^2 + tan(1/2*a) - tan(1 
/2*c))*log(abs(tan(1/2*b*x + 1/2*c) + 1))/(tan(1/2*a)^2*tan(1/2*c)^2 + tan 
(1/2*a)^2 + tan(1/2*c)^2 + 1) - (tan(1/2*a)^2*tan(1/2*c) - tan(1/2*a)*tan( 
1/2*c)^2 + tan(1/2*a) - tan(1/2*c))*log(abs(tan(1/2*b*x + 1/2*c) - 1))/(ta 
n(1/2*a)^2*tan(1/2*c)^2 + tan(1/2*a)^2 + tan(1/2*c)^2 + 1) - (tan(1/2*a)^2 
*tan(1/2*c)^2 - tan(1/2*a)^2 + 4*tan(1/2*a)*tan(1/2*c) - tan(1/2*c)^2 + 1) 
/((tan(1/2*a)^2*tan(1/2*c)^2 + tan(1/2*a)^2 + tan(1/2*c)^2 + 1)*(tan(1/2*b 
*x + 1/2*c)^2 - 1)))/b
 

Mupad [B] (verification not implemented)

Time = 21.60 (sec) , antiderivative size = 254, normalized size of antiderivative = 7.47 \[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=\frac {{\mathrm {e}}^{a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}+1\right )}{b\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}+{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\right )}+\frac {\ln \left ({\mathrm {e}}^{a\,1{}\mathrm {i}}\,{\mathrm {e}}^{b\,x\,1{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}-1\right )\,1{}\mathrm {i}}{\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}}}\right )\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}-1\right )}{2\,b\,\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}}}-\frac {\ln \left ({\mathrm {e}}^{a\,1{}\mathrm {i}}\,{\mathrm {e}}^{b\,x\,1{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )+\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}-1\right )\,1{}\mathrm {i}}{\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\mathrm {e}}^{-c\,2{}\mathrm {i}}}}\right )\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}-1\right )}{2\,b\,\sqrt {-{\mathrm {e}}^{a\,2{}\mathrm {i}-c\,2{}\mathrm {i}}}} \] Input:

int(sin(a + b*x)/cos(c + b*x)^2,x)
 

Output:

(exp(a*1i + b*x*1i)*(exp(a*2i - c*2i) + 1))/(b*(exp(a*2i - c*2i) + exp(a*2 
i + b*x*2i))) + (log(exp(a*1i)*exp(b*x*1i)*(exp(a*2i)*exp(-c*2i)*1i - 1i) 
- (exp(a*2i)*exp(-c*2i)*(exp(a*2i)*exp(-c*2i) - 1)*1i)/(-exp(a*2i)*exp(-c* 
2i))^(1/2))*(exp(a*2i - c*2i) - 1))/(2*b*(-exp(a*2i - c*2i))^(1/2)) - (log 
(exp(a*1i)*exp(b*x*1i)*(exp(a*2i)*exp(-c*2i)*1i - 1i) + (exp(a*2i)*exp(-c* 
2i)*(exp(a*2i)*exp(-c*2i) - 1)*1i)/(-exp(a*2i)*exp(-c*2i))^(1/2))*(exp(a*2 
i - c*2i) - 1))/(2*b*(-exp(a*2i - c*2i))^(1/2))
 

Reduce [F]

\[ \int \sec ^2(c+b x) \sin (a+b x) \, dx=\int \sec \left (b x +c \right )^{2} \sin \left (b x +a \right )d x \] Input:

int(sec(b*x+c)^2*sin(b*x+a),x)
 

Output:

int(sec(b*x + c)**2*sin(a + b*x),x)