\(\int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx\) [576]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 79 \[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}+\frac {4 \sin (a+b x)}{15 b \sin ^{\frac {3}{2}}(2 a+2 b x)}-\frac {8 \cos (a+b x)}{15 b \sqrt {\sin (2 a+2 b x)}} \] Output:

-1/5*cos(b*x+a)/b/sin(2*b*x+2*a)^(5/2)+4/15*sin(b*x+a)/b/sin(2*b*x+2*a)^(3 
/2)-8/15*cos(b*x+a)/b/sin(2*b*x+2*a)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.66 \[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=-\frac {\sqrt {\sin (2 (a+b x))} \left (27 \csc (a+b x)+3 \csc ^3(a+b x)-5 \sec (a+b x) \tan (a+b x)\right )}{120 b} \] Input:

Integrate[Cos[a + b*x]/Sin[2*a + 2*b*x]^(7/2),x]
 

Output:

-1/120*(Sqrt[Sin[2*(a + b*x)]]*(27*Csc[a + b*x] + 3*Csc[a + b*x]^3 - 5*Sec 
[a + b*x]*Tan[a + b*x]))/b
 

Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 84, normalized size of antiderivative = 1.06, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3042, 4791, 3042, 4792, 3042, 4779}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (a+b x)}{\sin (2 a+2 b x)^{7/2}}dx\)

\(\Big \downarrow \) 4791

\(\displaystyle \frac {4}{5} \int \frac {\sin (a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)}dx-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4}{5} \int \frac {\sin (a+b x)}{\sin (2 a+2 b x)^{5/2}}dx-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 4792

\(\displaystyle \frac {4}{5} \left (\frac {2}{3} \int \frac {\cos (a+b x)}{\sin ^{\frac {3}{2}}(2 a+2 b x)}dx+\frac {\sin (a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\right )-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {4}{5} \left (\frac {2}{3} \int \frac {\cos (a+b x)}{\sin (2 a+2 b x)^{3/2}}dx+\frac {\sin (a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\right )-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\)

\(\Big \downarrow \) 4779

\(\displaystyle \frac {4}{5} \left (\frac {\sin (a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)}-\frac {2 \cos (a+b x)}{3 b \sqrt {\sin (2 a+2 b x)}}\right )-\frac {\cos (a+b x)}{5 b \sin ^{\frac {5}{2}}(2 a+2 b x)}\)

Input:

Int[Cos[a + b*x]/Sin[2*a + 2*b*x]^(7/2),x]
 

Output:

(4*(Sin[a + b*x]/(3*b*Sin[2*a + 2*b*x]^(3/2)) - (2*Cos[a + b*x])/(3*b*Sqrt 
[Sin[2*a + 2*b*x]])))/5 - Cos[a + b*x]/(5*b*Sin[2*a + 2*b*x]^(5/2))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4779
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^( 
p_), x_Symbol] :> Simp[(-(e*Cos[a + b*x])^m)*((g*Sin[c + d*x])^(p + 1)/(b*g 
*m)), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ[b*c - a*d, 0] && EqQ[ 
d/b, 2] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]
 

rule 4791
Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] 
 :> Simp[Cos[a + b*x]*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp 
[(2*p + 3)/(2*g*(p + 1))   Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p + 1), x], x 
] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !Int 
egerQ[p] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 4792
Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] 
 :> Simp[(-Sin[a + b*x])*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + S 
imp[(2*p + 3)/(2*g*(p + 1))   Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p + 1), x] 
, x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  ! 
IntegerQ[p] && LtQ[p, -1] && IntegerQ[2*p]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 82.13 (sec) , antiderivative size = 481, normalized size of antiderivative = 6.09

\[-\frac {\sqrt {-\frac {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}{\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1}}\, \left (24 \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right )}\, \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )+1}\, \sqrt {-2 \tan \left (\frac {a}{2}+\frac {b x}{2}\right )+2}\, \sqrt {-\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}\, \operatorname {EllipticE}\left (\sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )+1}, \frac {\sqrt {2}}{2}\right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-12 \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right )}\, \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )+1}\, \sqrt {-2 \tan \left (\frac {a}{2}+\frac {b x}{2}\right )+2}\, \sqrt {-\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}\, \operatorname {EllipticF}\left (\sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )+1}, \frac {\sqrt {2}}{2}\right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}+\sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right )}\, \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{6}-\sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right )}\, \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{4}+12 \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{3}-\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}\, \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{4}-\sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right )}\, \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-12 \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{3}-\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}\, \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}+\sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right )}\right )}{160 b \tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{3} \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{3}-\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}}\]

Input:

int(cos(b*x+a)/sin(2*b*x+2*a)^(7/2),x)
 

Output:

-1/160/b*(-tan(1/2*a+1/2*b*x)/(tan(1/2*a+1/2*b*x)^2-1))^(1/2)/tan(1/2*a+1/ 
2*b*x)^3*(24*(tan(1/2*a+1/2*b*x)*(tan(1/2*a+1/2*b*x)^2-1))^(1/2)*(tan(1/2* 
a+1/2*b*x)+1)^(1/2)*(-2*tan(1/2*a+1/2*b*x)+2)^(1/2)*(-tan(1/2*a+1/2*b*x))^ 
(1/2)*EllipticE((tan(1/2*a+1/2*b*x)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2*b* 
x)^2-12*(tan(1/2*a+1/2*b*x)*(tan(1/2*a+1/2*b*x)^2-1))^(1/2)*(tan(1/2*a+1/2 
*b*x)+1)^(1/2)*(-2*tan(1/2*a+1/2*b*x)+2)^(1/2)*(-tan(1/2*a+1/2*b*x))^(1/2) 
*EllipticF((tan(1/2*a+1/2*b*x)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2*b*x)^2+ 
(tan(1/2*a+1/2*b*x)*(tan(1/2*a+1/2*b*x)^2-1))^(1/2)*tan(1/2*a+1/2*b*x)^6-( 
tan(1/2*a+1/2*b*x)*(tan(1/2*a+1/2*b*x)^2-1))^(1/2)*tan(1/2*a+1/2*b*x)^4+12 
*(tan(1/2*a+1/2*b*x)^3-tan(1/2*a+1/2*b*x))^(1/2)*tan(1/2*a+1/2*b*x)^4-(tan 
(1/2*a+1/2*b*x)*(tan(1/2*a+1/2*b*x)^2-1))^(1/2)*tan(1/2*a+1/2*b*x)^2-12*(t 
an(1/2*a+1/2*b*x)^3-tan(1/2*a+1/2*b*x))^(1/2)*tan(1/2*a+1/2*b*x)^2+(tan(1/ 
2*a+1/2*b*x)*(tan(1/2*a+1/2*b*x)^2-1))^(1/2))/(tan(1/2*a+1/2*b*x)^3-tan(1/ 
2*a+1/2*b*x))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.30 \[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=-\frac {\sqrt {2} {\left (32 \, \cos \left (b x + a\right )^{4} - 40 \, \cos \left (b x + a\right )^{2} + 5\right )} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} + 32 \, {\left (\cos \left (b x + a\right )^{4} - \cos \left (b x + a\right )^{2}\right )} \sin \left (b x + a\right )}{120 \, {\left (b \cos \left (b x + a\right )^{4} - b \cos \left (b x + a\right )^{2}\right )} \sin \left (b x + a\right )} \] Input:

integrate(cos(b*x+a)/sin(2*b*x+2*a)^(7/2),x, algorithm="fricas")
 

Output:

-1/120*(sqrt(2)*(32*cos(b*x + a)^4 - 40*cos(b*x + a)^2 + 5)*sqrt(cos(b*x + 
 a)*sin(b*x + a)) + 32*(cos(b*x + a)^4 - cos(b*x + a)^2)*sin(b*x + a))/((b 
*cos(b*x + a)^4 - b*cos(b*x + a)^2)*sin(b*x + a))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\text {Timed out} \] Input:

integrate(cos(b*x+a)/sin(2*b*x+2*a)**(7/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\int { \frac {\cos \left (b x + a\right )}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate(cos(b*x+a)/sin(2*b*x+2*a)^(7/2),x, algorithm="maxima")
 

Output:

integrate(cos(b*x + a)/sin(2*b*x + 2*a)^(7/2), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18022 vs. \(2 (67) = 134\).

Time = 161.21 (sec) , antiderivative size = 18022, normalized size of antiderivative = 228.13 \[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\text {Too large to display} \] Input:

integrate(cos(b*x+a)/sin(2*b*x+2*a)^(7/2),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

-1/960*sqrt(2)*sqrt(-tan(1/2*b*x)^4*tan(1/2*a)^3 - tan(1/2*b*x)^3*tan(1/2* 
a)^4 + tan(1/2*b*x)^4*tan(1/2*a) + 6*tan(1/2*b*x)^3*tan(1/2*a)^2 + 6*tan(1 
/2*b*x)^2*tan(1/2*a)^3 + tan(1/2*b*x)*tan(1/2*a)^4 - tan(1/2*b*x)^3 - 6*ta 
n(1/2*b*x)^2*tan(1/2*a) - 6*tan(1/2*b*x)*tan(1/2*a)^2 - tan(1/2*a)^3 + tan 
(1/2*b*x) + tan(1/2*a))*(((((((((((3*sqrt(2)*tan(1/2*a)^88 + 221*sqrt(2)*t 
an(1/2*a)^86 + 4529*sqrt(2)*tan(1/2*a)^84 + 46575*sqrt(2)*tan(1/2*a)^82 + 
267014*sqrt(2)*tan(1/2*a)^80 + 611706*sqrt(2)*tan(1/2*a)^78 - 3503654*sqrt 
(2)*tan(1/2*a)^76 - 44470106*sqrt(2)*tan(1/2*a)^74 - 259557037*sqrt(2)*tan 
(1/2*a)^72 - 1054367027*sqrt(2)*tan(1/2*a)^70 - 3278963927*sqrt(2)*tan(1/2 
*a)^68 - 8089589961*sqrt(2)*tan(1/2*a)^66 - 16006283224*sqrt(2)*tan(1/2*a) 
^64 - 25186632744*sqrt(2)*tan(1/2*a)^62 - 30337876456*sqrt(2)*tan(1/2*a)^6 
0 - 24685712920*sqrt(2)*tan(1/2*a)^58 - 5629982106*sqrt(2)*tan(1/2*a)^56 + 
 19969391706*sqrt(2)*tan(1/2*a)^54 + 37658626338*sqrt(2)*tan(1/2*a)^52 + 3 
6190152990*sqrt(2)*tan(1/2*a)^50 + 18717018180*sqrt(2)*tan(1/2*a)^48 + 204 
0819900*sqrt(2)*tan(1/2*a)^46 + 2040819900*sqrt(2)*tan(1/2*a)^44 + 1871701 
8180*sqrt(2)*tan(1/2*a)^42 + 36190152990*sqrt(2)*tan(1/2*a)^40 + 376586263 
38*sqrt(2)*tan(1/2*a)^38 + 19969391706*sqrt(2)*tan(1/2*a)^36 - 5629982106* 
sqrt(2)*tan(1/2*a)^34 - 24685712920*sqrt(2)*tan(1/2*a)^32 - 30337876456*sq 
rt(2)*tan(1/2*a)^30 - 25186632744*sqrt(2)*tan(1/2*a)^28 - 16006283224*sqrt 
(2)*tan(1/2*a)^26 - 8089589961*sqrt(2)*tan(1/2*a)^24 - 3278963927*sqrt(...
 

Mupad [B] (verification not implemented)

Time = 23.08 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.72 \[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\frac {4\,{\mathrm {e}}^{a\,1{}\mathrm {i}+b\,x\,1{}\mathrm {i}}\,\sqrt {\frac {{\mathrm {e}}^{-a\,2{}\mathrm {i}-b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}-\frac {{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}}{2}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,2{}\mathrm {i}+{\mathrm {e}}^{a\,4{}\mathrm {i}+b\,x\,4{}\mathrm {i}}\,3{}\mathrm {i}+{\mathrm {e}}^{a\,6{}\mathrm {i}+b\,x\,6{}\mathrm {i}}\,2{}\mathrm {i}-{\mathrm {e}}^{a\,8{}\mathrm {i}+b\,x\,8{}\mathrm {i}}\,2{}\mathrm {i}-2{}\mathrm {i}\right )}{15\,b\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}-1\right )}^3\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )}^2} \] Input:

int(cos(a + b*x)/sin(2*a + 2*b*x)^(7/2),x)
 

Output:

(4*exp(a*1i + b*x*1i)*((exp(- a*2i - b*x*2i)*1i)/2 - (exp(a*2i + b*x*2i)*1 
i)/2)^(1/2)*(exp(a*2i + b*x*2i)*2i + exp(a*4i + b*x*4i)*3i + exp(a*6i + b* 
x*6i)*2i - exp(a*8i + b*x*8i)*2i - 2i))/(15*b*(exp(a*2i + b*x*2i) - 1)^3*( 
exp(a*2i + b*x*2i) + 1)^2)
 

Reduce [F]

\[ \int \frac {\cos (a+b x)}{\sin ^{\frac {7}{2}}(2 a+2 b x)} \, dx=\int \frac {\sqrt {\sin \left (2 b x +2 a \right )}\, \cos \left (b x +a \right )}{\sin \left (2 b x +2 a \right )^{4}}d x \] Input:

int(cos(b*x+a)/sin(2*b*x+2*a)^(7/2),x)
 

Output:

int((sqrt(sin(2*a + 2*b*x))*cos(a + b*x))/sin(2*a + 2*b*x)**4,x)