\(\int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx\) [590]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 28 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=-\frac {\cos ^3(a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)} \] Output:

-1/3*cos(b*x+a)^3/b/sin(2*b*x+2*a)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 27, normalized size of antiderivative = 0.96 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=-\frac {\csc ^3(a+b x) \sin ^{\frac {3}{2}}(2 (a+b x))}{24 b} \] Input:

Integrate[Cos[a + b*x]^3/Sin[2*a + 2*b*x]^(5/2),x]
 

Output:

-1/24*(Csc[a + b*x]^3*Sin[2*(a + b*x)]^(3/2))/b
 

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {3042, 4779}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (a+b x)^3}{\sin (2 a+2 b x)^{5/2}}dx\)

\(\Big \downarrow \) 4779

\(\displaystyle -\frac {\cos ^3(a+b x)}{3 b \sin ^{\frac {3}{2}}(2 a+2 b x)}\)

Input:

Int[Cos[a + b*x]^3/Sin[2*a + 2*b*x]^(5/2),x]
 

Output:

-1/3*Cos[a + b*x]^3/(b*Sin[2*a + 2*b*x]^(3/2))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4779
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^( 
p_), x_Symbol] :> Simp[(-(e*Cos[a + b*x])^m)*((g*Sin[c + d*x])^(p + 1)/(b*g 
*m)), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ[b*c - a*d, 0] && EqQ[ 
d/b, 2] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 19.98 (sec) , antiderivative size = 192, normalized size of antiderivative = 6.86

method result size
default \(\frac {\sqrt {-\frac {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}{\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1}}\, \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right ) \left (4 \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )+1}\, \sqrt {-2 \tan \left (\frac {a}{2}+\frac {b x}{2}\right )+2}\, \sqrt {-\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}\, \operatorname {EllipticF}\left (\sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )+1}, \frac {\sqrt {2}}{2}\right ) \tan \left (\frac {a}{2}+\frac {b x}{2}\right )+\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{4}-1\right )}{24 \tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right ) \left (\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{2}-1\right )}\, \sqrt {\tan \left (\frac {a}{2}+\frac {b x}{2}\right )^{3}-\tan \left (\frac {a}{2}+\frac {b x}{2}\right )}\, b}\) \(192\)

Input:

int(cos(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/24*(-tan(1/2*a+1/2*b*x)/(tan(1/2*a+1/2*b*x)^2-1))^(1/2)*(tan(1/2*a+1/2*b 
*x)^2-1)/tan(1/2*a+1/2*b*x)*(4*(tan(1/2*a+1/2*b*x)+1)^(1/2)*(-2*tan(1/2*a+ 
1/2*b*x)+2)^(1/2)*(-tan(1/2*a+1/2*b*x))^(1/2)*EllipticF((tan(1/2*a+1/2*b*x 
)+1)^(1/2),1/2*2^(1/2))*tan(1/2*a+1/2*b*x)+tan(1/2*a+1/2*b*x)^4-1)/(tan(1/ 
2*a+1/2*b*x)*(tan(1/2*a+1/2*b*x)^2-1))^(1/2)/(tan(1/2*a+1/2*b*x)^3-tan(1/2 
*a+1/2*b*x))^(1/2)/b
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 53 vs. \(2 (24) = 48\).

Time = 0.08 (sec) , antiderivative size = 53, normalized size of antiderivative = 1.89 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\frac {\sqrt {2} \sqrt {\cos \left (b x + a\right ) \sin \left (b x + a\right )} \cos \left (b x + a\right ) + \cos \left (b x + a\right )^{2} - 1}{12 \, {\left (b \cos \left (b x + a\right )^{2} - b\right )}} \] Input:

integrate(cos(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x, algorithm="fricas")
 

Output:

1/12*(sqrt(2)*sqrt(cos(b*x + a)*sin(b*x + a))*cos(b*x + a) + cos(b*x + a)^ 
2 - 1)/(b*cos(b*x + a)^2 - b)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\text {Timed out} \] Input:

integrate(cos(b*x+a)**3/sin(2*b*x+2*a)**(5/2),x)
                                                                                    
                                                                                    
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\int { \frac {\cos \left (b x + a\right )^{3}}{\sin \left (2 \, b x + 2 \, a\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(cos(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x, algorithm="maxima")
 

Output:

integrate(cos(b*x + a)^3/sin(2*b*x + 2*a)^(5/2), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 15292 vs. \(2 (24) = 48\).

Time = 91.67 (sec) , antiderivative size = 15292, normalized size of antiderivative = 546.14 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\text {Too large to display} \] Input:

integrate(cos(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x, algorithm="giac")
 

Output:

1/48*sqrt(2)*sqrt(-tan(1/2*b*x)^4*tan(1/2*a)^3 - tan(1/2*b*x)^3*tan(1/2*a) 
^4 + tan(1/2*b*x)^4*tan(1/2*a) + 6*tan(1/2*b*x)^3*tan(1/2*a)^2 + 6*tan(1/2 
*b*x)^2*tan(1/2*a)^3 + tan(1/2*b*x)*tan(1/2*a)^4 - tan(1/2*b*x)^3 - 6*tan( 
1/2*b*x)^2*tan(1/2*a) - 6*tan(1/2*b*x)*tan(1/2*a)^2 - tan(1/2*a)^3 + tan(1 
/2*b*x) + tan(1/2*a))*(((((((sqrt(2)*tan(1/2*a)^57 + 50*sqrt(2)*tan(1/2*a) 
^55 + 516*sqrt(2)*tan(1/2*a)^53 + 1750*sqrt(2)*tan(1/2*a)^51 - 5215*sqrt(2 
)*tan(1/2*a)^49 - 77796*sqrt(2)*tan(1/2*a)^47 - 386576*sqrt(2)*tan(1/2*a)^ 
45 - 1186876*sqrt(2)*tan(1/2*a)^43 - 2515251*sqrt(2)*tan(1/2*a)^41 - 37599 
30*sqrt(2)*tan(1/2*a)^39 - 3812844*sqrt(2)*tan(1/2*a)^37 - 2196894*sqrt(2) 
*tan(1/2*a)^35 - 36499*sqrt(2)*tan(1/2*a)^33 + 824296*sqrt(2)*tan(1/2*a)^3 
1 - 824296*sqrt(2)*tan(1/2*a)^27 + 36499*sqrt(2)*tan(1/2*a)^25 + 2196894*s 
qrt(2)*tan(1/2*a)^23 + 3812844*sqrt(2)*tan(1/2*a)^21 + 3759930*sqrt(2)*tan 
(1/2*a)^19 + 2515251*sqrt(2)*tan(1/2*a)^17 + 1186876*sqrt(2)*tan(1/2*a)^15 
 + 386576*sqrt(2)*tan(1/2*a)^13 + 77796*sqrt(2)*tan(1/2*a)^11 + 5215*sqrt( 
2)*tan(1/2*a)^9 - 1750*sqrt(2)*tan(1/2*a)^7 - 516*sqrt(2)*tan(1/2*a)^5 - 5 
0*sqrt(2)*tan(1/2*a)^3 - sqrt(2)*tan(1/2*a))*tan(1/2*b*x)/(tan(1/2*a)^51 + 
 23*tan(1/2*a)^49 + 252*tan(1/2*a)^47 + 1748*tan(1/2*a)^45 + 8602*tan(1/2* 
a)^43 + 31878*tan(1/2*a)^41 + 92092*tan(1/2*a)^39 + 211508*tan(1/2*a)^37 + 
 389367*tan(1/2*a)^35 + 572033*tan(1/2*a)^33 + 653752*tan(1/2*a)^31 + 5348 
88*tan(1/2*a)^29 + 208012*tan(1/2*a)^27 - 208012*tan(1/2*a)^25 - 534888...
 

Mupad [B] (verification not implemented)

Time = 21.92 (sec) , antiderivative size = 94, normalized size of antiderivative = 3.36 \[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\frac {\sqrt {\sin \left (2\,a+2\,b\,x\right )}\,\left (\frac {2\,{\sin \left (\frac {a}{2}+\frac {b\,x}{2}\right )}^2}{3}-{\sin \left (\frac {3\,a}{2}+\frac {3\,b\,x}{2}\right )}^2+\frac {{\sin \left (\frac {5\,a}{2}+\frac {5\,b\,x}{2}\right )}^2}{3}\right )}{b\,\left (30\,{\sin \left (a+b\,x\right )}^2-12\,{\sin \left (2\,a+2\,b\,x\right )}^2+2\,{\sin \left (3\,a+3\,b\,x\right )}^2\right )} \] Input:

int(cos(a + b*x)^3/sin(2*a + 2*b*x)^(5/2),x)
 

Output:

(sin(2*a + 2*b*x)^(1/2)*((2*sin(a/2 + (b*x)/2)^2)/3 - sin((3*a)/2 + (3*b*x 
)/2)^2 + sin((5*a)/2 + (5*b*x)/2)^2/3))/(b*(2*sin(3*a + 3*b*x)^2 - 12*sin( 
2*a + 2*b*x)^2 + 30*sin(a + b*x)^2))
 

Reduce [F]

\[ \int \frac {\cos ^3(a+b x)}{\sin ^{\frac {5}{2}}(2 a+2 b x)} \, dx=\int \frac {\sqrt {\sin \left (2 b x +2 a \right )}\, \cos \left (b x +a \right )^{3}}{\sin \left (2 b x +2 a \right )^{3}}d x \] Input:

int(cos(b*x+a)^3/sin(2*b*x+2*a)^(5/2),x)
 

Output:

int((sqrt(sin(2*a + 2*b*x))*cos(a + b*x)**3)/sin(2*a + 2*b*x)**3,x)