\(\int \cos (x) \tan (6 x) \, dx\) [51]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 7, antiderivative size = 89 \[ \int \cos (x) \tan (6 x) \, dx=\frac {\text {arctanh}\left (\sqrt {2} \cos (x)\right )}{3 \sqrt {2}}+\frac {\text {arctanh}\left (2 \sqrt {2-\sqrt {3}} \cos (x)\right )}{6 \sqrt {2-\sqrt {3}}}+\frac {\text {arctanh}\left (2 \sqrt {2+\sqrt {3}} \cos (x)\right )}{6 \sqrt {2+\sqrt {3}}}-\cos (x) \] Output:

1/6*arctanh(cos(x)*2^(1/2))*2^(1/2)+1/6*arctanh(2*(1/2*6^(1/2)-1/2*2^(1/2) 
)*cos(x))/(1/2*6^(1/2)-1/2*2^(1/2))+1/6*arctanh(2*(1/2*6^(1/2)+1/2*2^(1/2) 
)*cos(x))/(1/2*6^(1/2)+1/2*2^(1/2))-cos(x)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 7.01 (sec) , antiderivative size = 628, normalized size of antiderivative = 7.06 \[ \int \cos (x) \tan (6 x) \, dx =\text {Too large to display} \] Input:

Integrate[Cos[x]*Tan[6*x],x]
 

Output:

((4 + 4*I)*(-1)^(3/4)*ArcTanh[(-1 + Tan[x/2])/Sqrt[2]] + (4 - 4*I)*(-1)^(1 
/4)*ArcTanh[(1 + Tan[x/2])/Sqrt[2]] - 24*Cos[x] - (2*(1 + Sqrt[2])*(x - 2* 
Sqrt[3]*ArcTanh[(2 + (2 + Sqrt[2])*Tan[x/2])/Sqrt[6]] - Log[Sec[x/2]^2] + 
Log[-(Sec[x/2]^2*(Sqrt[2] - 2*Cos[x] + 2*Sin[x]))]))/(2 + Sqrt[2]) + Sqrt[ 
2]*(x + 2*Sqrt[3]*ArcTanh[(Sqrt[2] + (-1 + Sqrt[2])*Tan[x/2])/Sqrt[3]] - L 
og[Sec[x/2]^2] + Log[Sec[x/2]^2*(1 + Sqrt[2]*Cos[x] - Sqrt[2]*Sin[x])]) - 
(2*(2*(-2 + Sqrt[6])*ArcTanh[Sqrt[2] + (Sqrt[2] - Sqrt[3])*Tan[x/2]] + (3* 
Sqrt[2] - 2*Sqrt[3])*(x - Log[Sec[x/2]^2] + Log[-(Sec[x/2]^2*(Sqrt[3] + Sq 
rt[2]*Cos[x] - Sqrt[2]*Sin[x]))]))*(Sqrt[2] - Sqrt[3]*Sin[x])*(-3 + Sqrt[6 
] - (-2 + Sqrt[6])*Cos[x] + (-2 + Sqrt[6])*Sin[x]))/(-36 + 15*Sqrt[6] + (2 
0 - 8*Sqrt[6])*Cos[x] + (12 - 5*Sqrt[6])*Cos[2*x] - 50*Sin[x] + 20*Sqrt[6] 
*Sin[x] + 12*Sin[2*x] - 5*Sqrt[6]*Sin[2*x]) + (2*(-2*(Sqrt[2] + Sqrt[3])*A 
rcTanh[(2 + (2 + Sqrt[6])*Tan[x/2])/Sqrt[2]] + (3 + Sqrt[6])*(x - Log[Sec[ 
x/2]^2] + Log[-(Sec[x/2]^2*(Sqrt[6] - 2*Cos[x] + 2*Sin[x]))]))*(2 + Sqrt[6 
]*Sin[x])*(3 + Sqrt[6] - (2 + Sqrt[6])*Cos[x] + (2 + Sqrt[6])*Sin[x]))/(-3 
6 - 15*Sqrt[6] + 4*(5 + 2*Sqrt[6])*Cos[x] + (12 + 5*Sqrt[6])*Cos[2*x] - 50 
*Sin[x] - 20*Sqrt[6]*Sin[x] + 12*Sin[2*x] + 5*Sqrt[6]*Sin[2*x]))/24
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.714, Rules used = {3042, 4879, 27, 2460, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos (x) \tan (6 x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (6 x)}{\sec (x)}dx\)

\(\Big \downarrow \) 4879

\(\displaystyle -\int -\frac {2 \cos ^2(x) \left (16 \cos ^4(x)-16 \cos ^2(x)+3\right )}{-32 \cos ^6(x)+48 \cos ^4(x)-18 \cos ^2(x)+1}d\cos (x)\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \int \frac {\cos ^2(x) \left (16 \cos ^4(x)-16 \cos ^2(x)+3\right )}{-32 \cos ^6(x)+48 \cos ^4(x)-18 \cos ^2(x)+1}d\cos (x)\)

\(\Big \downarrow \) 2460

\(\displaystyle 2 \int \left (\frac {1-8 \cos ^2(x)}{3 \left (16 \cos ^4(x)-16 \cos ^2(x)+1\right )}-\frac {1}{6 \left (2 \cos ^2(x)-1\right )}-\frac {1}{2}\right )d\cos (x)\)

\(\Big \downarrow \) 2009

\(\displaystyle 2 \left (\frac {\text {arctanh}\left (\sqrt {2} \cos (x)\right )}{6 \sqrt {2}}+\frac {1}{12} \sqrt {2-\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2-\sqrt {3}}}\right )+\frac {1}{12} \sqrt {2+\sqrt {3}} \text {arctanh}\left (\frac {2 \cos (x)}{\sqrt {2+\sqrt {3}}}\right )-\frac {\cos (x)}{2}\right )\)

Input:

Int[Cos[x]*Tan[6*x],x]
 

Output:

2*(ArcTanh[Sqrt[2]*Cos[x]]/(6*Sqrt[2]) + (Sqrt[2 - Sqrt[3]]*ArcTanh[(2*Cos 
[x])/Sqrt[2 - Sqrt[3]]])/12 + (Sqrt[2 + Sqrt[3]]*ArcTanh[(2*Cos[x])/Sqrt[2 
 + Sqrt[3]]])/12 - Cos[x]/2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2460
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px /. x -> Sqrt[x]]}, 
Int[ExpandIntegrand[u*(Qx /. x -> x^2)^p, x], x] /;  !SumQ[NonfreeFactors[Q 
x, x]]] /; PolyQ[Px, x^2] && GtQ[Expon[Px, x], 2] &&  !BinomialQ[Px, x] && 
 !TrinomialQ[Px, x] && ILtQ[p, 0] && RationalFunctionQ[u, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4879
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, Simp[With[{d = FreeFa 
ctors[Cos[v], x]}, -d/Coefficient[v, x, 1]   Subst[Int[SubstFor[1, Cos[v]/d 
, u/Sin[v], x], x], x, Cos[v]/d]], x] /;  !FalseQ[v] && FunctionOfQ[Nonfree 
Factors[Cos[v], x], u/Sin[v], x]]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.20 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.11

method result size
risch \(-\frac {{\mathrm e}^{i x}}{2}-\frac {{\mathrm e}^{-i x}}{2}-i \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (20736 \textit {\_Z}^{4}+576 \textit {\_Z}^{2}+1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 i x}-12 i \textit {\_R} \,{\mathrm e}^{i x}+1\right )\right )+\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}+\sqrt {2}\, {\mathrm e}^{i x}+1\right )}{12}-\frac {\sqrt {2}\, \ln \left ({\mathrm e}^{2 i x}-\sqrt {2}\, {\mathrm e}^{i x}+1\right )}{12}\) \(99\)

Input:

int(cos(x)*tan(6*x),x,method=_RETURNVERBOSE)
 

Output:

-1/2*exp(I*x)-1/2*exp(-I*x)-I*sum(_R*ln(exp(2*I*x)-12*I*_R*exp(I*x)+1),_R= 
RootOf(20736*_Z^4+576*_Z^2+1))+1/12*2^(1/2)*ln(exp(2*I*x)+2^(1/2)*exp(I*x) 
+1)-1/12*2^(1/2)*ln(exp(2*I*x)-2^(1/2)*exp(I*x)+1)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 134 vs. \(2 (65) = 130\).

Time = 0.10 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.51 \[ \int \cos (x) \tan (6 x) \, dx=\frac {1}{12} \, \sqrt {\sqrt {3} + 2} \log \left (\sqrt {\sqrt {3} + 2} + 2 \, \cos \left (x\right )\right ) - \frac {1}{12} \, \sqrt {\sqrt {3} + 2} \log \left (\sqrt {\sqrt {3} + 2} - 2 \, \cos \left (x\right )\right ) + \frac {1}{12} \, \sqrt {-\sqrt {3} + 2} \log \left (\sqrt {-\sqrt {3} + 2} + 2 \, \cos \left (x\right )\right ) - \frac {1}{12} \, \sqrt {-\sqrt {3} + 2} \log \left (\sqrt {-\sqrt {3} + 2} - 2 \, \cos \left (x\right )\right ) + \frac {1}{12} \, \sqrt {2} \log \left (-\frac {2 \, \cos \left (x\right )^{2} + 2 \, \sqrt {2} \cos \left (x\right ) + 1}{2 \, \cos \left (x\right )^{2} - 1}\right ) - \cos \left (x\right ) \] Input:

integrate(cos(x)*tan(6*x),x, algorithm="fricas")
 

Output:

1/12*sqrt(sqrt(3) + 2)*log(sqrt(sqrt(3) + 2) + 2*cos(x)) - 1/12*sqrt(sqrt( 
3) + 2)*log(sqrt(sqrt(3) + 2) - 2*cos(x)) + 1/12*sqrt(-sqrt(3) + 2)*log(sq 
rt(-sqrt(3) + 2) + 2*cos(x)) - 1/12*sqrt(-sqrt(3) + 2)*log(sqrt(-sqrt(3) + 
 2) - 2*cos(x)) + 1/12*sqrt(2)*log(-(2*cos(x)^2 + 2*sqrt(2)*cos(x) + 1)/(2 
*cos(x)^2 - 1)) - cos(x)
 

Sympy [F]

\[ \int \cos (x) \tan (6 x) \, dx=\int \cos {\left (x \right )} \tan {\left (6 x \right )}\, dx \] Input:

integrate(cos(x)*tan(6*x),x)
 

Output:

Integral(cos(x)*tan(6*x), x)
 

Maxima [F]

\[ \int \cos (x) \tan (6 x) \, dx=\int { \cos \left (x\right ) \tan \left (6 \, x\right ) \,d x } \] Input:

integrate(cos(x)*tan(6*x),x, algorithm="maxima")
 

Output:

1/24*sqrt(2)*log(2*sqrt(2)*sin(2*x)*sin(x) + 2*(sqrt(2)*cos(x) + 1)*cos(2* 
x) + cos(2*x)^2 + 2*cos(x)^2 + sin(2*x)^2 + 2*sin(x)^2 + 2*sqrt(2)*cos(x) 
+ 1) - 1/24*sqrt(2)*log(-2*sqrt(2)*sin(2*x)*sin(x) - 2*(sqrt(2)*cos(x) - 1 
)*cos(2*x) + cos(2*x)^2 + 2*cos(x)^2 + sin(2*x)^2 + 2*sin(x)^2 - 2*sqrt(2) 
*cos(x) + 1) - cos(x) - integrate(1/3*((2*sin(7*x) + sin(5*x) - sin(3*x) - 
 2*sin(x))*cos(8*x) + (sin(3*x) + 2*sin(x))*cos(4*x) - (2*cos(7*x) + cos(5 
*x) - cos(3*x) - 2*cos(x))*sin(8*x) - 2*(cos(4*x) - 1)*sin(7*x) - (cos(4*x 
) - 1)*sin(5*x) - (cos(3*x) + 2*cos(x))*sin(4*x) + 2*cos(7*x)*sin(4*x) + c 
os(5*x)*sin(4*x) - sin(3*x) - 2*sin(x))/(2*(cos(4*x) - 1)*cos(8*x) - cos(8 
*x)^2 - cos(4*x)^2 - sin(8*x)^2 + 2*sin(8*x)*sin(4*x) - sin(4*x)^2 + 2*cos 
(4*x) - 1), x)
 

Giac [F]

\[ \int \cos (x) \tan (6 x) \, dx=\int { \cos \left (x\right ) \tan \left (6 \, x\right ) \,d x } \] Input:

integrate(cos(x)*tan(6*x),x, algorithm="giac")
 

Output:

integrate(cos(x)*tan(6*x), x)
 

Mupad [B] (verification not implemented)

Time = 19.79 (sec) , antiderivative size = 787, normalized size of antiderivative = 8.84 \[ \int \cos (x) \tan (6 x) \, dx=\text {Too large to display} \] Input:

int(tan(6*x)*cos(x),x)
 

Output:

(6^(1/2)*(atan((2^(1/2)*321030945816576i)/(213254896304333030400*tan(x/2)^ 
4 - 129275829262795438080*tan(x/2)^2 + 2176593611144037376) + (6^(1/2)*888 
405273481134080i)/(213254896304333030400*tan(x/2)^4 - 12927582926279543808 
0*tan(x/2)^2 + 2176593611144037376) - (2^(1/2)*tan(x/2)^2*1871105472480256 
0i)/(213254896304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 
 2176593611144037376) + (2^(1/2)*tan(x/2)^4*10905601889064960i)/(213254896 
304333030400*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 2176593611144 
037376) - (6^(1/2)*tan(x/2)^2*52765833462352287744i)/(21325489630433303040 
0*tan(x/2)^4 - 129275829262795438080*tan(x/2)^2 + 2176593611144037376) + ( 
6^(1/2)*tan(x/2)^4*87054650497106012160i)/(213254896304333030400*tan(x/2)^ 
4 - 129275829262795438080*tan(x/2)^2 + 2176593611144037376)) + atan((2^(1/ 
2)*1443325504589801788190484332544i)/(589232404262260650654553866240*2^(1/ 
2)*6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2 - 34367271726987 
959946466862039040*2^(1/2)*6^(1/2)*tan(x/2)^2 - 20870903094507989978345572 
92544) - (6^(1/2)*852047139771204346616741888000i)/(5892324042622606506545 
53866240*2^(1/2)*6^(1/2) + 119129717169909888440949339586560*tan(x/2)^2 - 
34367271726987959946466862039040*2^(1/2)*6^(1/2)*tan(x/2)^2 - 208709030945 
0798997834557292544) - (2^(1/2)*tan(x/2)^2*8418228357130530454356858241024 
0i)/(589232404262260650654553866240*2^(1/2)*6^(1/2) + 11912971716990988844 
0949339586560*tan(x/2)^2 - 34367271726987959946466862039040*2^(1/2)*6^(...
 

Reduce [F]

\[ \int \cos (x) \tan (6 x) \, dx=\int \cos \left (x \right ) \tan \left (6 x \right )d x \] Input:

int(cos(x)*tan(6*x),x)
 

Output:

int(cos(x)*tan(6*x),x)