\(\int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx\) [7]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [C] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 20, antiderivative size = 85 \[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=\frac {b \cos \left (2 a-\frac {2 b c}{d}\right ) \operatorname {CosIntegral}\left (\frac {2 b c}{d}+2 b x\right )}{d^2}-\frac {\sin (2 a+2 b x)}{2 d (c+d x)}-\frac {b \sin \left (2 a-\frac {2 b c}{d}\right ) \text {Si}\left (\frac {2 b c}{d}+2 b x\right )}{d^2} \] Output:

b*cos(2*a-2*b*c/d)*Ci(2*b*c/d+2*b*x)/d^2-1/2*sin(2*b*x+2*a)/d/(d*x+c)-b*si 
n(2*a-2*b*c/d)*Si(2*b*c/d+2*b*x)/d^2
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.94 \[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=\frac {2 b \cos \left (2 a-\frac {2 b c}{d}\right ) \operatorname {CosIntegral}\left (\frac {2 b (c+d x)}{d}\right )-\frac {d \sin (2 (a+b x))}{c+d x}-2 b \sin \left (2 a-\frac {2 b c}{d}\right ) \text {Si}\left (\frac {2 b (c+d x)}{d}\right )}{2 d^2} \] Input:

Integrate[(Cos[a + b*x]*Sin[a + b*x])/(c + d*x)^2,x]
 

Output:

(2*b*Cos[2*a - (2*b*c)/d]*CosIntegral[(2*b*(c + d*x))/d] - (d*Sin[2*(a + b 
*x)])/(c + d*x) - 2*b*Sin[2*a - (2*b*c)/d]*SinIntegral[(2*b*(c + d*x))/d]) 
/(2*d^2)
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.08, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {4906, 27, 3042, 3778, 3042, 3784, 3042, 3780, 3783}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin (a+b x) \cos (a+b x)}{(c+d x)^2} \, dx\)

\(\Big \downarrow \) 4906

\(\displaystyle \int \frac {\sin (2 a+2 b x)}{2 (c+d x)^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int \frac {\sin (2 a+2 b x)}{(c+d x)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {\sin (2 a+2 b x)}{(c+d x)^2}dx\)

\(\Big \downarrow \) 3778

\(\displaystyle \frac {1}{2} \left (\frac {2 b \int \frac {\cos (2 a+2 b x)}{c+d x}dx}{d}-\frac {\sin (2 a+2 b x)}{d (c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {2 b \int \frac {\sin \left (2 a+2 b x+\frac {\pi }{2}\right )}{c+d x}dx}{d}-\frac {\sin (2 a+2 b x)}{d (c+d x)}\right )\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {1}{2} \left (\frac {2 b \left (\cos \left (2 a-\frac {2 b c}{d}\right ) \int \frac {\cos \left (\frac {2 b c}{d}+2 b x\right )}{c+d x}dx-\sin \left (2 a-\frac {2 b c}{d}\right ) \int \frac {\sin \left (\frac {2 b c}{d}+2 b x\right )}{c+d x}dx\right )}{d}-\frac {\sin (2 a+2 b x)}{d (c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {2 b \left (\cos \left (2 a-\frac {2 b c}{d}\right ) \int \frac {\sin \left (\frac {2 b c}{d}+2 b x+\frac {\pi }{2}\right )}{c+d x}dx-\sin \left (2 a-\frac {2 b c}{d}\right ) \int \frac {\sin \left (\frac {2 b c}{d}+2 b x\right )}{c+d x}dx\right )}{d}-\frac {\sin (2 a+2 b x)}{d (c+d x)}\right )\)

\(\Big \downarrow \) 3780

\(\displaystyle \frac {1}{2} \left (\frac {2 b \left (\cos \left (2 a-\frac {2 b c}{d}\right ) \int \frac {\sin \left (\frac {2 b c}{d}+2 b x+\frac {\pi }{2}\right )}{c+d x}dx-\frac {\sin \left (2 a-\frac {2 b c}{d}\right ) \text {Si}\left (\frac {2 b c}{d}+2 b x\right )}{d}\right )}{d}-\frac {\sin (2 a+2 b x)}{d (c+d x)}\right )\)

\(\Big \downarrow \) 3783

\(\displaystyle \frac {1}{2} \left (\frac {2 b \left (\frac {\cos \left (2 a-\frac {2 b c}{d}\right ) \operatorname {CosIntegral}\left (\frac {2 b c}{d}+2 b x\right )}{d}-\frac {\sin \left (2 a-\frac {2 b c}{d}\right ) \text {Si}\left (\frac {2 b c}{d}+2 b x\right )}{d}\right )}{d}-\frac {\sin (2 a+2 b x)}{d (c+d x)}\right )\)

Input:

Int[(Cos[a + b*x]*Sin[a + b*x])/(c + d*x)^2,x]
 

Output:

(-(Sin[2*a + 2*b*x]/(d*(c + d*x))) + (2*b*((Cos[2*a - (2*b*c)/d]*CosIntegr 
al[(2*b*c)/d + 2*b*x])/d - (Sin[2*a - (2*b*c)/d]*SinIntegral[(2*b*c)/d + 2 
*b*x])/d))/d)/2
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3778
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c 
 + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m + 1))), x] - Simp[f/(d*(m + 1))   Int[( 
c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[m, - 
1]
 

rule 3780
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinInte 
gral[e + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*e - c*f, 0]
 

rule 3783
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosInte 
gral[e - Pi/2 + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - 
c*f, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 
Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.45

method result size
derivativedivides \(\frac {\frac {\sin \left (2 b x +2 a \right ) b^{2}}{2 d \left (a d -c b -d \left (b x +a \right )\right )}+\frac {b^{2} \left (\operatorname {Si}\left (-2 b x -2 a +\frac {2 a d -2 c b}{d}\right ) \sin \left (\frac {2 a d -2 c b}{d}\right )+\operatorname {Ci}\left (2 b x +2 a -\frac {2 \left (a d -c b \right )}{d}\right ) \cos \left (\frac {2 a d -2 c b}{d}\right )\right )}{d^{2}}}{b}\) \(123\)
default \(\frac {\frac {\sin \left (2 b x +2 a \right ) b^{2}}{2 d \left (a d -c b -d \left (b x +a \right )\right )}+\frac {b^{2} \left (\operatorname {Si}\left (-2 b x -2 a +\frac {2 a d -2 c b}{d}\right ) \sin \left (\frac {2 a d -2 c b}{d}\right )+\operatorname {Ci}\left (2 b x +2 a -\frac {2 \left (a d -c b \right )}{d}\right ) \cos \left (\frac {2 a d -2 c b}{d}\right )\right )}{d^{2}}}{b}\) \(123\)
risch \(-\frac {b \,{\mathrm e}^{-\frac {2 i \left (a d -c b \right )}{d}} \operatorname {expIntegral}_{1}\left (2 i b x +2 i a -\frac {2 i \left (a d -c b \right )}{d}\right )}{2 d^{2}}-\frac {b \,{\mathrm e}^{\frac {2 i \left (a d -c b \right )}{d}} \operatorname {expIntegral}_{1}\left (-2 i b x -2 i a -\frac {2 \left (-i a d +i c b \right )}{d}\right )}{2 d^{2}}-\frac {\left (-2 b d x -2 c b \right ) \sin \left (2 b x +2 a \right )}{4 d \left (-b d x -c b \right ) \left (d x +c \right )}\) \(141\)

Input:

int(cos(b*x+a)*sin(b*x+a)/(d*x+c)^2,x,method=_RETURNVERBOSE)
 

Output:

1/b*(1/2*sin(2*b*x+2*a)*b^2/d/(a*d-c*b-d*(b*x+a))+b^2/d^2*(Si(-2*b*x-2*a+2 
*(a*d-b*c)/d)*sin(2*(a*d-b*c)/d)+Ci(2*b*x+2*a-2*(a*d-b*c)/d)*cos(2*(a*d-b* 
c)/d)))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.24 \[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=\frac {{\left (b d x + b c\right )} \cos \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right ) \operatorname {Ci}\left (\frac {2 \, {\left (b d x + b c\right )}}{d}\right ) - d \cos \left (b x + a\right ) \sin \left (b x + a\right ) - {\left (b d x + b c\right )} \sin \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right ) \operatorname {Si}\left (\frac {2 \, {\left (b d x + b c\right )}}{d}\right )}{d^{3} x + c d^{2}} \] Input:

integrate(cos(b*x+a)*sin(b*x+a)/(d*x+c)^2,x, algorithm="fricas")
 

Output:

((b*d*x + b*c)*cos(-2*(b*c - a*d)/d)*cos_integral(2*(b*d*x + b*c)/d) - d*c 
os(b*x + a)*sin(b*x + a) - (b*d*x + b*c)*sin(-2*(b*c - a*d)/d)*sin_integra 
l(2*(b*d*x + b*c)/d))/(d^3*x + c*d^2)
 

Sympy [F]

\[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=\int \frac {\sin {\left (a + b x \right )} \cos {\left (a + b x \right )}}{\left (c + d x\right )^{2}}\, dx \] Input:

integrate(cos(b*x+a)*sin(b*x+a)/(d*x+c)**2,x)
 

Output:

Integral(sin(a + b*x)*cos(a + b*x)/(c + d*x)**2, x)
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.95 \[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=-\frac {b^{2} {\left (-i \, E_{2}\left (\frac {2 \, {\left (-i \, b c - i \, {\left (b x + a\right )} d + i \, a d\right )}}{d}\right ) + i \, E_{2}\left (-\frac {2 \, {\left (-i \, b c - i \, {\left (b x + a\right )} d + i \, a d\right )}}{d}\right )\right )} \cos \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right ) + b^{2} {\left (E_{2}\left (\frac {2 \, {\left (-i \, b c - i \, {\left (b x + a\right )} d + i \, a d\right )}}{d}\right ) + E_{2}\left (-\frac {2 \, {\left (-i \, b c - i \, {\left (b x + a\right )} d + i \, a d\right )}}{d}\right )\right )} \sin \left (-\frac {2 \, {\left (b c - a d\right )}}{d}\right )}{4 \, {\left (b c d + {\left (b x + a\right )} d^{2} - a d^{2}\right )} b} \] Input:

integrate(cos(b*x+a)*sin(b*x+a)/(d*x+c)^2,x, algorithm="maxima")
 

Output:

-1/4*(b^2*(-I*exp_integral_e(2, 2*(-I*b*c - I*(b*x + a)*d + I*a*d)/d) + I* 
exp_integral_e(2, -2*(-I*b*c - I*(b*x + a)*d + I*a*d)/d))*cos(-2*(b*c - a* 
d)/d) + b^2*(exp_integral_e(2, 2*(-I*b*c - I*(b*x + a)*d + I*a*d)/d) + exp 
_integral_e(2, -2*(-I*b*c - I*(b*x + a)*d + I*a*d)/d))*sin(-2*(b*c - a*d)/ 
d))/((b*c*d + (b*x + a)*d^2 - a*d^2)*b)
 

Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.38 (sec) , antiderivative size = 2870, normalized size of antiderivative = 33.76 \[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=\text {Too large to display} \] Input:

integrate(cos(b*x+a)*sin(b*x+a)/(d*x+c)^2,x, algorithm="giac")
 

Output:

1/2*(b*d*x*real_part(cos_integral(2*b*x + 2*b*c/d))*tan(b*x)^2*tan(a)^2*ta 
n(b*c/d)^2 + b*d*x*real_part(cos_integral(-2*b*x - 2*b*c/d))*tan(b*x)^2*ta 
n(a)^2*tan(b*c/d)^2 - 2*b*d*x*imag_part(cos_integral(2*b*x + 2*b*c/d))*tan 
(b*x)^2*tan(a)^2*tan(b*c/d) + 2*b*d*x*imag_part(cos_integral(-2*b*x - 2*b* 
c/d))*tan(b*x)^2*tan(a)^2*tan(b*c/d) - 4*b*d*x*sin_integral(2*(b*d*x + b*c 
)/d)*tan(b*x)^2*tan(a)^2*tan(b*c/d) + 2*b*d*x*imag_part(cos_integral(2*b*x 
 + 2*b*c/d))*tan(b*x)^2*tan(a)*tan(b*c/d)^2 - 2*b*d*x*imag_part(cos_integr 
al(-2*b*x - 2*b*c/d))*tan(b*x)^2*tan(a)*tan(b*c/d)^2 + 4*b*d*x*sin_integra 
l(2*(b*d*x + b*c)/d)*tan(b*x)^2*tan(a)*tan(b*c/d)^2 + b*c*real_part(cos_in 
tegral(2*b*x + 2*b*c/d))*tan(b*x)^2*tan(a)^2*tan(b*c/d)^2 + b*c*real_part( 
cos_integral(-2*b*x - 2*b*c/d))*tan(b*x)^2*tan(a)^2*tan(b*c/d)^2 - b*d*x*r 
eal_part(cos_integral(2*b*x + 2*b*c/d))*tan(b*x)^2*tan(a)^2 - b*d*x*real_p 
art(cos_integral(-2*b*x - 2*b*c/d))*tan(b*x)^2*tan(a)^2 + 4*b*d*x*real_par 
t(cos_integral(2*b*x + 2*b*c/d))*tan(b*x)^2*tan(a)*tan(b*c/d) + 4*b*d*x*re 
al_part(cos_integral(-2*b*x - 2*b*c/d))*tan(b*x)^2*tan(a)*tan(b*c/d) - 2*b 
*c*imag_part(cos_integral(2*b*x + 2*b*c/d))*tan(b*x)^2*tan(a)^2*tan(b*c/d) 
 + 2*b*c*imag_part(cos_integral(-2*b*x - 2*b*c/d))*tan(b*x)^2*tan(a)^2*tan 
(b*c/d) - 4*b*c*sin_integral(2*(b*d*x + b*c)/d)*tan(b*x)^2*tan(a)^2*tan(b* 
c/d) - b*d*x*real_part(cos_integral(2*b*x + 2*b*c/d))*tan(b*x)^2*tan(b*c/d 
)^2 - b*d*x*real_part(cos_integral(-2*b*x - 2*b*c/d))*tan(b*x)^2*tan(b*...
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=\int \frac {\cos \left (a+b\,x\right )\,\sin \left (a+b\,x\right )}{{\left (c+d\,x\right )}^2} \,d x \] Input:

int((cos(a + b*x)*sin(a + b*x))/(c + d*x)^2,x)
                                                                                    
                                                                                    
 

Output:

int((cos(a + b*x)*sin(a + b*x))/(c + d*x)^2, x)
 

Reduce [F]

\[ \int \frac {\cos (a+b x) \sin (a+b x)}{(c+d x)^2} \, dx=\int \frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{d^{2} x^{2}+2 c d x +c^{2}}d x \] Input:

int(cos(b*x+a)*sin(b*x+a)/(d*x+c)^2,x)
 

Output:

int((cos(a + b*x)*sin(a + b*x))/(c**2 + 2*c*d*x + d**2*x**2),x)