\(\int (c+d x)^2 \tan ^2(a+b x) \, dx\) [255]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 96 \[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=-\frac {i (c+d x)^2}{b}-\frac {(c+d x)^3}{3 d}+\frac {2 d (c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{b^2}-\frac {i d^2 \operatorname {PolyLog}\left (2,-e^{2 i (a+b x)}\right )}{b^3}+\frac {(c+d x)^2 \tan (a+b x)}{b} \] Output:

-I*(d*x+c)^2/b-1/3*(d*x+c)^3/d+2*d*(d*x+c)*ln(1+exp(2*I*(b*x+a)))/b^2-I*d^ 
2*polylog(2,-exp(2*I*(b*x+a)))/b^3+(d*x+c)^2*tan(b*x+a)/b
 

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(203\) vs. \(2(96)=192\).

Time = 5.38 (sec) , antiderivative size = 203, normalized size of antiderivative = 2.11 \[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=-\frac {1}{3} x \left (3 c^2+3 c d x+d^2 x^2\right )+\frac {(c+d x)^2 \sec (a) \sec (a+b x) \sin (b x)}{b}+\frac {2 c d (\log (\cos (a+b x))+b x \tan (a))}{b^2}+\frac {d^2 \left (i b x (\pi +2 \arctan (\cot (a)))+\pi \log \left (1+e^{-2 i b x}\right )+2 (b x-\arctan (\cot (a))) \log \left (1-e^{2 i (b x-\arctan (\cot (a)))}\right )-\pi \log (\cos (b x))+2 \arctan (\cot (a)) \log (\sin (b x-\arctan (\cot (a))))-i \operatorname {PolyLog}\left (2,e^{2 i (b x-\arctan (\cot (a)))}\right )+b^2 e^{-i \arctan (\cot (a))} x^2 \sqrt {\csc ^2(a)} \tan (a)\right )}{b^3} \] Input:

Integrate[(c + d*x)^2*Tan[a + b*x]^2,x]
 

Output:

-1/3*(x*(3*c^2 + 3*c*d*x + d^2*x^2)) + ((c + d*x)^2*Sec[a]*Sec[a + b*x]*Si 
n[b*x])/b + (2*c*d*(Log[Cos[a + b*x]] + b*x*Tan[a]))/b^2 + (d^2*(I*b*x*(Pi 
 + 2*ArcTan[Cot[a]]) + Pi*Log[1 + E^((-2*I)*b*x)] + 2*(b*x - ArcTan[Cot[a] 
])*Log[1 - E^((2*I)*(b*x - ArcTan[Cot[a]]))] - Pi*Log[Cos[b*x]] + 2*ArcTan 
[Cot[a]]*Log[Sin[b*x - ArcTan[Cot[a]]]] - I*PolyLog[2, E^((2*I)*(b*x - Arc 
Tan[Cot[a]]))] + (b^2*x^2*Sqrt[Csc[a]^2]*Tan[a])/E^(I*ArcTan[Cot[a]])))/b^ 
3
 

Rubi [A] (verified)

Time = 0.48 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.16, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3042, 4203, 17, 3042, 4202, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^2 \tan ^2(a+b x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (c+d x)^2 \tan (a+b x)^2dx\)

\(\Big \downarrow \) 4203

\(\displaystyle -\frac {2 d \int (c+d x) \tan (a+b x)dx}{b}-\int (c+d x)^2dx+\frac {(c+d x)^2 \tan (a+b x)}{b}\)

\(\Big \downarrow \) 17

\(\displaystyle -\frac {2 d \int (c+d x) \tan (a+b x)dx}{b}+\frac {(c+d x)^2 \tan (a+b x)}{b}-\frac {(c+d x)^3}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {2 d \int (c+d x) \tan (a+b x)dx}{b}+\frac {(c+d x)^2 \tan (a+b x)}{b}-\frac {(c+d x)^3}{3 d}\)

\(\Big \downarrow \) 4202

\(\displaystyle -\frac {2 d \left (\frac {i (c+d x)^2}{2 d}-2 i \int \frac {e^{2 i (a+b x)} (c+d x)}{1+e^{2 i (a+b x)}}dx\right )}{b}+\frac {(c+d x)^2 \tan (a+b x)}{b}-\frac {(c+d x)^3}{3 d}\)

\(\Big \downarrow \) 2620

\(\displaystyle -\frac {2 d \left (\frac {i (c+d x)^2}{2 d}-2 i \left (\frac {i d \int \log \left (1+e^{2 i (a+b x)}\right )dx}{2 b}-\frac {i (c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{2 b}\right )\right )}{b}+\frac {(c+d x)^2 \tan (a+b x)}{b}-\frac {(c+d x)^3}{3 d}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {2 d \left (\frac {i (c+d x)^2}{2 d}-2 i \left (\frac {d \int e^{-2 i (a+b x)} \log \left (1+e^{2 i (a+b x)}\right )de^{2 i (a+b x)}}{4 b^2}-\frac {i (c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{2 b}\right )\right )}{b}+\frac {(c+d x)^2 \tan (a+b x)}{b}-\frac {(c+d x)^3}{3 d}\)

\(\Big \downarrow \) 2838

\(\displaystyle -\frac {2 d \left (\frac {i (c+d x)^2}{2 d}-2 i \left (-\frac {d \operatorname {PolyLog}\left (2,-e^{2 i (a+b x)}\right )}{4 b^2}-\frac {i (c+d x) \log \left (1+e^{2 i (a+b x)}\right )}{2 b}\right )\right )}{b}+\frac {(c+d x)^2 \tan (a+b x)}{b}-\frac {(c+d x)^3}{3 d}\)

Input:

Int[(c + d*x)^2*Tan[a + b*x]^2,x]
 

Output:

-1/3*(c + d*x)^3/d - (2*d*(((I/2)*(c + d*x)^2)/d - (2*I)*(((-1/2*I)*(c + d 
*x)*Log[1 + E^((2*I)*(a + b*x))])/b - (d*PolyLog[2, -E^((2*I)*(a + b*x))]) 
/(4*b^2))))/b + ((c + d*x)^2*Tan[a + b*x])/b
 

Defintions of rubi rules used

rule 17
Int[(c_.)*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> Simp[c*((a + b*x)^(m + 1 
)/(b*(m + 1))), x] /; FreeQ[{a, b, c, m}, x] && NeQ[m, -1]
 

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4202
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
*((c + d*x)^(m + 1)/(d*(m + 1))), x] - Simp[2*I   Int[(c + d*x)^m*(E^(2*I*( 
e + f*x))/(1 + E^(2*I*(e + f*x)))), x], x] /; FreeQ[{c, d, e, f}, x] && IGt 
Q[m, 0]
 

rule 4203
Int[((c_.) + (d_.)*(x_))^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symb 
ol] :> Simp[b*(c + d*x)^m*((b*Tan[e + f*x])^(n - 1)/(f*(n - 1))), x] + (-Si 
mp[b*d*(m/(f*(n - 1)))   Int[(c + d*x)^(m - 1)*(b*Tan[e + f*x])^(n - 1), x] 
, x] - Simp[b^2   Int[(c + d*x)^m*(b*Tan[e + f*x])^(n - 2), x], x]) /; Free 
Q[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 0]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 198 vs. \(2 (88 ) = 176\).

Time = 0.49 (sec) , antiderivative size = 199, normalized size of antiderivative = 2.07

method result size
risch \(-\frac {d^{2} x^{3}}{3}-c d \,x^{2}-c^{2} x -\frac {c^{3}}{3 d}+\frac {2 i \left (x^{2} d^{2}+2 c d x +c^{2}\right )}{b \left ({\mathrm e}^{2 i \left (b x +a \right )}+1\right )}+\frac {2 d c \ln \left ({\mathrm e}^{2 i \left (b x +a \right )}+1\right )}{b^{2}}-\frac {4 d c \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{2}}-\frac {2 i d^{2} x^{2}}{b}-\frac {4 i d^{2} a x}{b^{2}}-\frac {2 i d^{2} a^{2}}{b^{3}}+\frac {2 d^{2} \ln \left ({\mathrm e}^{2 i \left (b x +a \right )}+1\right ) x}{b^{2}}-\frac {i d^{2} \operatorname {polylog}\left (2, -{\mathrm e}^{2 i \left (b x +a \right )}\right )}{b^{3}}+\frac {4 d^{2} a \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{3}}\) \(199\)

Input:

int((d*x+c)^2*tan(b*x+a)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/3*d^2*x^3-c*d*x^2-c^2*x-1/3/d*c^3+2*I*(d^2*x^2+2*c*d*x+c^2)/b/(exp(2*I* 
(b*x+a))+1)+2*d/b^2*c*ln(exp(2*I*(b*x+a))+1)-4*d/b^2*c*ln(exp(I*(b*x+a)))- 
2*I*d^2/b*x^2-4*I*d^2/b^2*a*x-2*I*d^2/b^3*a^2+2*d^2/b^2*ln(exp(2*I*(b*x+a) 
)+1)*x-I*d^2*polylog(2,-exp(2*I*(b*x+a)))/b^3+4*d^2/b^3*a*ln(exp(I*(b*x+a) 
))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 210 vs. \(2 (85) = 170\).

Time = 0.07 (sec) , antiderivative size = 210, normalized size of antiderivative = 2.19 \[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=-\frac {2 \, b^{3} d^{2} x^{3} + 6 \, b^{3} c d x^{2} + 6 \, b^{3} c^{2} x - 3 i \, d^{2} {\rm Li}_2\left (\frac {2 \, {\left (i \, \tan \left (b x + a\right ) - 1\right )}}{\tan \left (b x + a\right )^{2} + 1} + 1\right ) + 3 i \, d^{2} {\rm Li}_2\left (\frac {2 \, {\left (-i \, \tan \left (b x + a\right ) - 1\right )}}{\tan \left (b x + a\right )^{2} + 1} + 1\right ) - 6 \, {\left (b d^{2} x + b c d\right )} \log \left (-\frac {2 \, {\left (i \, \tan \left (b x + a\right ) - 1\right )}}{\tan \left (b x + a\right )^{2} + 1}\right ) - 6 \, {\left (b d^{2} x + b c d\right )} \log \left (-\frac {2 \, {\left (-i \, \tan \left (b x + a\right ) - 1\right )}}{\tan \left (b x + a\right )^{2} + 1}\right ) - 6 \, {\left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2}\right )} \tan \left (b x + a\right )}{6 \, b^{3}} \] Input:

integrate((d*x+c)^2*tan(b*x+a)^2,x, algorithm="fricas")
 

Output:

-1/6*(2*b^3*d^2*x^3 + 6*b^3*c*d*x^2 + 6*b^3*c^2*x - 3*I*d^2*dilog(2*(I*tan 
(b*x + a) - 1)/(tan(b*x + a)^2 + 1) + 1) + 3*I*d^2*dilog(2*(-I*tan(b*x + a 
) - 1)/(tan(b*x + a)^2 + 1) + 1) - 6*(b*d^2*x + b*c*d)*log(-2*(I*tan(b*x + 
 a) - 1)/(tan(b*x + a)^2 + 1)) - 6*(b*d^2*x + b*c*d)*log(-2*(-I*tan(b*x + 
a) - 1)/(tan(b*x + a)^2 + 1)) - 6*(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2)*ta 
n(b*x + a))/b^3
 

Sympy [F]

\[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=\int \left (c + d x\right )^{2} \tan ^{2}{\left (a + b x \right )}\, dx \] Input:

integrate((d*x+c)**2*tan(b*x+a)**2,x)
 

Output:

Integral((c + d*x)**2*tan(a + b*x)**2, x)
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 418 vs. \(2 (85) = 170\).

Time = 0.30 (sec) , antiderivative size = 418, normalized size of antiderivative = 4.35 \[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=\frac {i \, b^{3} d^{2} x^{3} + 3 i \, b^{3} c d x^{2} + 3 i \, b^{3} c^{2} x + 6 \, b^{2} c^{2} + 6 \, {\left (b d^{2} x + b c d + {\left (b d^{2} x + b c d\right )} \cos \left (2 \, b x + 2 \, a\right ) - {\left (-i \, b d^{2} x - i \, b c d\right )} \sin \left (2 \, b x + 2 \, a\right )\right )} \arctan \left (\sin \left (2 \, b x + 2 \, a\right ), \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) + {\left (i \, b^{3} d^{2} x^{3} - 3 \, {\left (-i \, b^{3} c d + 2 \, b^{2} d^{2}\right )} x^{2} - 3 \, {\left (-i \, b^{3} c^{2} + 4 \, b^{2} c d\right )} x\right )} \cos \left (2 \, b x + 2 \, a\right ) - 3 \, {\left (d^{2} \cos \left (2 \, b x + 2 \, a\right ) + i \, d^{2} \sin \left (2 \, b x + 2 \, a\right ) + d^{2}\right )} {\rm Li}_2\left (-e^{\left (2 i \, b x + 2 i \, a\right )}\right ) - 3 \, {\left (i \, b d^{2} x + i \, b c d + {\left (i \, b d^{2} x + i \, b c d\right )} \cos \left (2 \, b x + 2 \, a\right ) - {\left (b d^{2} x + b c d\right )} \sin \left (2 \, b x + 2 \, a\right )\right )} \log \left (\cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (2 \, b x + 2 \, a\right )^{2} + 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) - {\left (b^{3} d^{2} x^{3} + 3 \, {\left (b^{3} c d + 2 i \, b^{2} d^{2}\right )} x^{2} + 3 \, {\left (b^{3} c^{2} + 4 i \, b^{2} c d\right )} x\right )} \sin \left (2 \, b x + 2 \, a\right )}{-3 i \, b^{3} \cos \left (2 \, b x + 2 \, a\right ) + 3 \, b^{3} \sin \left (2 \, b x + 2 \, a\right ) - 3 i \, b^{3}} \] Input:

integrate((d*x+c)^2*tan(b*x+a)^2,x, algorithm="maxima")
 

Output:

(I*b^3*d^2*x^3 + 3*I*b^3*c*d*x^2 + 3*I*b^3*c^2*x + 6*b^2*c^2 + 6*(b*d^2*x 
+ b*c*d + (b*d^2*x + b*c*d)*cos(2*b*x + 2*a) - (-I*b*d^2*x - I*b*c*d)*sin( 
2*b*x + 2*a))*arctan2(sin(2*b*x + 2*a), cos(2*b*x + 2*a) + 1) + (I*b^3*d^2 
*x^3 - 3*(-I*b^3*c*d + 2*b^2*d^2)*x^2 - 3*(-I*b^3*c^2 + 4*b^2*c*d)*x)*cos( 
2*b*x + 2*a) - 3*(d^2*cos(2*b*x + 2*a) + I*d^2*sin(2*b*x + 2*a) + d^2)*dil 
og(-e^(2*I*b*x + 2*I*a)) - 3*(I*b*d^2*x + I*b*c*d + (I*b*d^2*x + I*b*c*d)* 
cos(2*b*x + 2*a) - (b*d^2*x + b*c*d)*sin(2*b*x + 2*a))*log(cos(2*b*x + 2*a 
)^2 + sin(2*b*x + 2*a)^2 + 2*cos(2*b*x + 2*a) + 1) - (b^3*d^2*x^3 + 3*(b^3 
*c*d + 2*I*b^2*d^2)*x^2 + 3*(b^3*c^2 + 4*I*b^2*c*d)*x)*sin(2*b*x + 2*a))/( 
-3*I*b^3*cos(2*b*x + 2*a) + 3*b^3*sin(2*b*x + 2*a) - 3*I*b^3)
 

Giac [F]

\[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=\int { {\left (d x + c\right )}^{2} \tan \left (b x + a\right )^{2} \,d x } \] Input:

integrate((d*x+c)^2*tan(b*x+a)^2,x, algorithm="giac")
 

Output:

integrate((d*x + c)^2*tan(b*x + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=\int {\mathrm {tan}\left (a+b\,x\right )}^2\,{\left (c+d\,x\right )}^2 \,d x \] Input:

int(tan(a + b*x)^2*(c + d*x)^2,x)
 

Output:

int(tan(a + b*x)^2*(c + d*x)^2, x)
 

Reduce [F]

\[ \int (c+d x)^2 \tan ^2(a+b x) \, dx=\frac {-6 \left (\int \tan \left (b x +a \right ) x d x \right ) b \,d^{2}-3 \,\mathrm {log}\left (\tan \left (b x +a \right )^{2}+1\right ) c d +3 \tan \left (b x +a \right ) b \,c^{2}+6 \tan \left (b x +a \right ) b c d x +3 \tan \left (b x +a \right ) b \,d^{2} x^{2}-3 b^{2} c^{2} x -3 b^{2} c d \,x^{2}-b^{2} d^{2} x^{3}}{3 b^{2}} \] Input:

int((d*x+c)^2*tan(b*x+a)^2,x)
 

Output:

( - 6*int(tan(a + b*x)*x,x)*b*d**2 - 3*log(tan(a + b*x)**2 + 1)*c*d + 3*ta 
n(a + b*x)*b*c**2 + 6*tan(a + b*x)*b*c*d*x + 3*tan(a + b*x)*b*d**2*x**2 - 
3*b**2*c**2*x - 3*b**2*c*d*x**2 - b**2*d**2*x**3)/(3*b**2)