\(\int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx\) [384]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 166 \[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx=-\frac {(c+d x)^2}{b}-\frac {i (c+d x)^3}{3 d}+\frac {(c+d x)^2 \log \left (1+e^{2 i (a+b x)}\right )}{b}-\frac {i d (c+d x) \operatorname {PolyLog}\left (2,-e^{2 i (a+b x)}\right )}{b^2}+\frac {d^2 \operatorname {PolyLog}\left (3,-e^{2 i (a+b x)}\right )}{2 b^3}+\frac {2 d (c+d x) \cos (a+b x) \sin (a+b x)}{b^2}-\frac {d^2 \sin ^2(a+b x)}{b^3}+\frac {2 (c+d x)^2 \sin ^2(a+b x)}{b} \] Output:

-(d*x+c)^2/b-1/3*I*(d*x+c)^3/d+(d*x+c)^2*ln(1+exp(2*I*(b*x+a)))/b-I*d*(d*x 
+c)*polylog(2,-exp(2*I*(b*x+a)))/b^2+1/2*d^2*polylog(3,-exp(2*I*(b*x+a)))/ 
b^3+2*d*(d*x+c)*cos(b*x+a)*sin(b*x+a)/b^2-d^2*sin(b*x+a)^2/b^3+2*(d*x+c)^2 
*sin(b*x+a)^2/b
 

Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(516\) vs. \(2(166)=332\).

Time = 6.32 (sec) , antiderivative size = 516, normalized size of antiderivative = 3.11 \[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx=\frac {i d^2 e^{-i a} \left (2 b^2 x^2 \left (2 b x-3 i \left (1+e^{2 i a}\right ) \log \left (1+e^{-2 i (a+b x)}\right )\right )+6 b \left (1+e^{2 i a}\right ) x \operatorname {PolyLog}\left (2,-e^{-2 i (a+b x)}\right )-3 i \left (1+e^{2 i a}\right ) \operatorname {PolyLog}\left (3,-e^{-2 i (a+b x)}\right )\right ) \sec (a)}{12 b^3}+\frac {c^2 \sec (a) (\cos (a) \log (\cos (a) \cos (b x)-\sin (a) \sin (b x))+b x \sin (a))}{b \left (\cos ^2(a)+\sin ^2(a)\right )}+\frac {c d \csc (a) \left (b^2 e^{-i \arctan (\cot (a))} x^2-\frac {\cot (a) \left (i b x (-\pi -2 \arctan (\cot (a)))-\pi \log \left (1+e^{-2 i b x}\right )-2 (b x-\arctan (\cot (a))) \log \left (1-e^{2 i (b x-\arctan (\cot (a)))}\right )+\pi \log (\cos (b x))-2 \arctan (\cot (a)) \log (\sin (b x-\arctan (\cot (a))))+i \operatorname {PolyLog}\left (2,e^{2 i (b x-\arctan (\cot (a)))}\right )\right )}{\sqrt {1+\cot ^2(a)}}\right ) \sec (a)}{b^2 \sqrt {\csc ^2(a) \left (\cos ^2(a)+\sin ^2(a)\right )}}-\frac {\cos (2 b x) \left (2 b^2 c^2 \cos (2 a)-d^2 \cos (2 a)+4 b^2 c d x \cos (2 a)+2 b^2 d^2 x^2 \cos (2 a)-2 b c d \sin (2 a)-2 b d^2 x \sin (2 a)\right )}{2 b^3}+\frac {\left (2 b c d \cos (2 a)+2 b d^2 x \cos (2 a)+2 b^2 c^2 \sin (2 a)-d^2 \sin (2 a)+4 b^2 c d x \sin (2 a)+2 b^2 d^2 x^2 \sin (2 a)\right ) \sin (2 b x)}{2 b^3}-\frac {1}{3} x \left (3 c^2+3 c d x+d^2 x^2\right ) \tan (a) \] Input:

Integrate[(c + d*x)^2*Sec[a + b*x]*Sin[3*a + 3*b*x],x]
 

Output:

((I/12)*d^2*(2*b^2*x^2*(2*b*x - (3*I)*(1 + E^((2*I)*a))*Log[1 + E^((-2*I)* 
(a + b*x))]) + 6*b*(1 + E^((2*I)*a))*x*PolyLog[2, -E^((-2*I)*(a + b*x))] - 
 (3*I)*(1 + E^((2*I)*a))*PolyLog[3, -E^((-2*I)*(a + b*x))])*Sec[a])/(b^3*E 
^(I*a)) + (c^2*Sec[a]*(Cos[a]*Log[Cos[a]*Cos[b*x] - Sin[a]*Sin[b*x]] + b*x 
*Sin[a]))/(b*(Cos[a]^2 + Sin[a]^2)) + (c*d*Csc[a]*((b^2*x^2)/E^(I*ArcTan[C 
ot[a]]) - (Cot[a]*(I*b*x*(-Pi - 2*ArcTan[Cot[a]]) - Pi*Log[1 + E^((-2*I)*b 
*x)] - 2*(b*x - ArcTan[Cot[a]])*Log[1 - E^((2*I)*(b*x - ArcTan[Cot[a]]))] 
+ Pi*Log[Cos[b*x]] - 2*ArcTan[Cot[a]]*Log[Sin[b*x - ArcTan[Cot[a]]]] + I*P 
olyLog[2, E^((2*I)*(b*x - ArcTan[Cot[a]]))]))/Sqrt[1 + Cot[a]^2])*Sec[a])/ 
(b^2*Sqrt[Csc[a]^2*(Cos[a]^2 + Sin[a]^2)]) - (Cos[2*b*x]*(2*b^2*c^2*Cos[2* 
a] - d^2*Cos[2*a] + 4*b^2*c*d*x*Cos[2*a] + 2*b^2*d^2*x^2*Cos[2*a] - 2*b*c* 
d*Sin[2*a] - 2*b*d^2*x*Sin[2*a]))/(2*b^3) + ((2*b*c*d*Cos[2*a] + 2*b*d^2*x 
*Cos[2*a] + 2*b^2*c^2*Sin[2*a] - d^2*Sin[2*a] + 4*b^2*c*d*x*Sin[2*a] + 2*b 
^2*d^2*x^2*Sin[2*a])*Sin[2*b*x])/(2*b^3) - (x*(3*c^2 + 3*c*d*x + d^2*x^2)* 
Tan[a])/3
 

Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {4931, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (c+d x)^2 \sin (3 a+3 b x) \sec (a+b x) \, dx\)

\(\Big \downarrow \) 4931

\(\displaystyle \int \left (3 (c+d x)^2 \sin (a+b x) \cos (a+b x)-(c+d x)^2 \sin ^2(a+b x) \tan (a+b x)\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {d^2 \operatorname {PolyLog}\left (3,-e^{2 i (a+b x)}\right )}{2 b^3}-\frac {d^2 \sin ^2(a+b x)}{b^3}-\frac {i d (c+d x) \operatorname {PolyLog}\left (2,-e^{2 i (a+b x)}\right )}{b^2}+\frac {2 d (c+d x) \sin (a+b x) \cos (a+b x)}{b^2}+\frac {(c+d x)^2 \log \left (1+e^{2 i (a+b x)}\right )}{b}+\frac {2 (c+d x)^2 \sin ^2(a+b x)}{b}-\frac {(c+d x)^2}{b}-\frac {i (c+d x)^3}{3 d}\)

Input:

Int[(c + d*x)^2*Sec[a + b*x]*Sin[3*a + 3*b*x],x]
 

Output:

-((c + d*x)^2/b) - ((I/3)*(c + d*x)^3)/d + ((c + d*x)^2*Log[1 + E^((2*I)*( 
a + b*x))])/b - (I*d*(c + d*x)*PolyLog[2, -E^((2*I)*(a + b*x))])/b^2 + (d^ 
2*PolyLog[3, -E^((2*I)*(a + b*x))])/(2*b^3) + (2*d*(c + d*x)*Cos[a + b*x]* 
Sin[a + b*x])/b^2 - (d^2*Sin[a + b*x]^2)/b^3 + (2*(c + d*x)^2*Sin[a + b*x] 
^2)/b
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 4931
Int[((e_.) + (f_.)*(x_))^(m_.)*(F_)[(a_.) + (b_.)*(x_)]^(p_.)*(G_)[(c_.) + 
(d_.)*(x_)]^(q_.), x_Symbol] :> Int[ExpandTrigExpand[(e + f*x)^m*G[c + d*x] 
^q, F, c + d*x, p, b/d, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && Member 
Q[{Sin, Cos}, F] && MemberQ[{Sec, Csc}, G] && IGtQ[p, 0] && IGtQ[q, 0] && E 
qQ[b*c - a*d, 0] && IGtQ[b/d, 1]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 385 vs. \(2 (154 ) = 308\).

Time = 1.22 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.33

method result size
risch \(-\frac {4 i c d a x}{b}-\frac {i d c \operatorname {polylog}\left (2, -{\mathrm e}^{2 i \left (b x +a \right )}\right )}{b^{2}}+\frac {i c^{3}}{3 d}+\frac {2 i d^{2} a^{2} x}{b^{2}}-\frac {\left (2 x^{2} d^{2} b^{2}+4 b^{2} c d x +2 i b \,d^{2} x +2 b^{2} c^{2}+2 i b c d -d^{2}\right ) {\mathrm e}^{2 i \left (b x +a \right )}}{4 b^{3}}-\frac {\left (2 x^{2} d^{2} b^{2}+4 b^{2} c d x -2 i b \,d^{2} x +2 b^{2} c^{2}-2 i b c d -d^{2}\right ) {\mathrm e}^{-2 i \left (b x +a \right )}}{4 b^{3}}-\frac {2 d^{2} a^{2} \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{3}}-\frac {i d^{2} x^{3}}{3}+\frac {4 c d a \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b^{2}}-i d c \,x^{2}+i c^{2} x -\frac {i d^{2} \operatorname {polylog}\left (2, -{\mathrm e}^{2 i \left (b x +a \right )}\right ) x}{b^{2}}-\frac {2 i c d \,a^{2}}{b^{2}}+\frac {4 i d^{2} a^{3}}{3 b^{3}}+\frac {2 d c \ln \left ({\mathrm e}^{2 i \left (b x +a \right )}+1\right ) x}{b}+\frac {d^{2} \ln \left ({\mathrm e}^{2 i \left (b x +a \right )}+1\right ) x^{2}}{b}+\frac {d^{2} \operatorname {polylog}\left (3, -{\mathrm e}^{2 i \left (b x +a \right )}\right )}{2 b^{3}}+\frac {c^{2} \ln \left ({\mathrm e}^{2 i \left (b x +a \right )}+1\right )}{b}-\frac {2 c^{2} \ln \left ({\mathrm e}^{i \left (b x +a \right )}\right )}{b}\) \(386\)

Input:

int((d*x+c)^2*sec(b*x+a)*sin(3*b*x+3*a),x,method=_RETURNVERBOSE)
 

Output:

-4*I/b*c*d*a*x-I/b^2*d*c*polylog(2,-exp(2*I*(b*x+a)))+1/3*I/d*c^3+2*I/b^2* 
d^2*a^2*x-1/4*(2*x^2*d^2*b^2+2*I*b*d^2*x+4*b^2*c*d*x+2*I*b*c*d+2*b^2*c^2-d 
^2)/b^3*exp(2*I*(b*x+a))-1/4*(2*x^2*d^2*b^2-2*I*b*d^2*x+4*b^2*c*d*x-2*I*b* 
c*d+2*b^2*c^2-d^2)/b^3*exp(-2*I*(b*x+a))-2/b^3*d^2*a^2*ln(exp(I*(b*x+a)))- 
1/3*I*d^2*x^3+4/b^2*c*d*a*ln(exp(I*(b*x+a)))-I*d*c*x^2+I*c^2*x-I/b^2*d^2*p 
olylog(2,-exp(2*I*(b*x+a)))*x-2*I/b^2*c*d*a^2+4/3*I/b^3*d^2*a^3+2/b*d*c*ln 
(exp(2*I*(b*x+a))+1)*x+1/b*d^2*ln(exp(2*I*(b*x+a))+1)*x^2+1/2*d^2*polylog( 
3,-exp(2*I*(b*x+a)))/b^3+1/b*c^2*ln(exp(2*I*(b*x+a))+1)-2/b*c^2*ln(exp(I*( 
b*x+a)))
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 681 vs. \(2 (151) = 302\).

Time = 0.12 (sec) , antiderivative size = 681, normalized size of antiderivative = 4.10 \[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx =\text {Too large to display} \] Input:

integrate((d*x+c)^2*sec(b*x+a)*sin(3*b*x+3*a),x, algorithm="fricas")
 

Output:

1/2*(2*b^2*d^2*x^2 + 4*b^2*c*d*x - 2*(2*b^2*d^2*x^2 + 4*b^2*c*d*x + 2*b^2* 
c^2 - d^2)*cos(b*x + a)^2 + 2*d^2*polylog(3, I*cos(b*x + a) + sin(b*x + a) 
) + 2*d^2*polylog(3, I*cos(b*x + a) - sin(b*x + a)) + 2*d^2*polylog(3, -I* 
cos(b*x + a) + sin(b*x + a)) + 2*d^2*polylog(3, -I*cos(b*x + a) - sin(b*x 
+ a)) + 4*(b*d^2*x + b*c*d)*cos(b*x + a)*sin(b*x + a) - 2*(-I*b*d^2*x - I* 
b*c*d)*dilog(I*cos(b*x + a) + sin(b*x + a)) - 2*(I*b*d^2*x + I*b*c*d)*dilo 
g(I*cos(b*x + a) - sin(b*x + a)) - 2*(I*b*d^2*x + I*b*c*d)*dilog(-I*cos(b* 
x + a) + sin(b*x + a)) - 2*(-I*b*d^2*x - I*b*c*d)*dilog(-I*cos(b*x + a) - 
sin(b*x + a)) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(cos(b*x + a) + I*sin(b 
*x + a) + I) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(cos(b*x + a) - I*sin(b* 
x + a) + I) + (b^2*d^2*x^2 + 2*b^2*c*d*x + 2*a*b*c*d - a^2*d^2)*log(I*cos( 
b*x + a) + sin(b*x + a) + 1) + (b^2*d^2*x^2 + 2*b^2*c*d*x + 2*a*b*c*d - a^ 
2*d^2)*log(I*cos(b*x + a) - sin(b*x + a) + 1) + (b^2*d^2*x^2 + 2*b^2*c*d*x 
 + 2*a*b*c*d - a^2*d^2)*log(-I*cos(b*x + a) + sin(b*x + a) + 1) + (b^2*d^2 
*x^2 + 2*b^2*c*d*x + 2*a*b*c*d - a^2*d^2)*log(-I*cos(b*x + a) - sin(b*x + 
a) + 1) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(-cos(b*x + a) + I*sin(b*x + 
a) + I) + (b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(-cos(b*x + a) - I*sin(b*x + 
a) + I))/b^3
 

Sympy [F(-1)]

Timed out. \[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx=\text {Timed out} \] Input:

integrate((d*x+c)**2*sec(b*x+a)*sin(3*b*x+3*a),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 303 vs. \(2 (151) = 302\).

Time = 0.22 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.83 \[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx=-\frac {c^{2} {\left (2 \, \cos \left (2 \, b x + 2 \, a\right ) - \log \left (\cos \left (2 \, b x\right )^{2} + 2 \, \cos \left (2 \, b x\right ) \cos \left (2 \, a\right ) + \cos \left (2 \, a\right )^{2} + \sin \left (2 \, b x\right )^{2} - 2 \, \sin \left (2 \, b x\right ) \sin \left (2 \, a\right ) + \sin \left (2 \, a\right )^{2}\right )\right )}}{2 \, b} + \frac {-2 i \, b^{3} d^{2} x^{3} - 6 i \, b^{3} c d x^{2} + 3 \, d^{2} {\rm Li}_{3}(-e^{\left (2 i \, b x + 2 i \, a\right )}) - 6 \, {\left (-i \, b^{2} d^{2} x^{2} - 2 i \, b^{2} c d x\right )} \arctan \left (\sin \left (2 \, b x + 2 \, a\right ), \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) - 3 \, {\left (2 \, b^{2} d^{2} x^{2} + 4 \, b^{2} c d x - d^{2}\right )} \cos \left (2 \, b x + 2 \, a\right ) - 6 \, {\left (i \, b d^{2} x + i \, b c d\right )} {\rm Li}_2\left (-e^{\left (2 i \, b x + 2 i \, a\right )}\right ) + 3 \, {\left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x\right )} \log \left (\cos \left (2 \, b x + 2 \, a\right )^{2} + \sin \left (2 \, b x + 2 \, a\right )^{2} + 2 \, \cos \left (2 \, b x + 2 \, a\right ) + 1\right ) + 6 \, {\left (b d^{2} x + b c d\right )} \sin \left (2 \, b x + 2 \, a\right )}{6 \, b^{3}} \] Input:

integrate((d*x+c)^2*sec(b*x+a)*sin(3*b*x+3*a),x, algorithm="maxima")
 

Output:

-1/2*c^2*(2*cos(2*b*x + 2*a) - log(cos(2*b*x)^2 + 2*cos(2*b*x)*cos(2*a) + 
cos(2*a)^2 + sin(2*b*x)^2 - 2*sin(2*b*x)*sin(2*a) + sin(2*a)^2))/b + 1/6*( 
-2*I*b^3*d^2*x^3 - 6*I*b^3*c*d*x^2 + 3*d^2*polylog(3, -e^(2*I*b*x + 2*I*a) 
) - 6*(-I*b^2*d^2*x^2 - 2*I*b^2*c*d*x)*arctan2(sin(2*b*x + 2*a), cos(2*b*x 
 + 2*a) + 1) - 3*(2*b^2*d^2*x^2 + 4*b^2*c*d*x - d^2)*cos(2*b*x + 2*a) - 6* 
(I*b*d^2*x + I*b*c*d)*dilog(-e^(2*I*b*x + 2*I*a)) + 3*(b^2*d^2*x^2 + 2*b^2 
*c*d*x)*log(cos(2*b*x + 2*a)^2 + sin(2*b*x + 2*a)^2 + 2*cos(2*b*x + 2*a) + 
 1) + 6*(b*d^2*x + b*c*d)*sin(2*b*x + 2*a))/b^3
 

Giac [F]

\[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx=\int { {\left (d x + c\right )}^{2} \sec \left (b x + a\right ) \sin \left (3 \, b x + 3 \, a\right ) \,d x } \] Input:

integrate((d*x+c)^2*sec(b*x+a)*sin(3*b*x+3*a),x, algorithm="giac")
                                                                                    
                                                                                    
 

Output:

integrate((d*x + c)^2*sec(b*x + a)*sin(3*b*x + 3*a), x)
 

Mupad [F(-1)]

Timed out. \[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx=\int \frac {\sin \left (3\,a+3\,b\,x\right )\,{\left (c+d\,x\right )}^2}{\cos \left (a+b\,x\right )} \,d x \] Input:

int((sin(3*a + 3*b*x)*(c + d*x)^2)/cos(a + b*x),x)
 

Output:

int((sin(3*a + 3*b*x)*(c + d*x)^2)/cos(a + b*x), x)
 

Reduce [F]

\[ \int (c+d x)^2 \sec (a+b x) \sin (3 a+3 b x) \, dx=\frac {9 \cos \left (3 b x +3 a \right ) b^{2} c^{2}+18 \cos \left (3 b x +3 a \right ) b^{2} c d x +9 \cos \left (3 b x +3 a \right ) b^{2} d^{2} x^{2}-2 \cos \left (3 b x +3 a \right ) d^{2}-108 \left (\int \frac {\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right )}{\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right )^{2} \tan \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right )^{2}+\tan \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-1}d x \right ) b^{3} c^{2}-108 \left (\int \frac {\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right ) x^{2}}{\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right )^{2} \tan \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right )^{2}+\tan \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-1}d x \right ) b^{3} d^{2}-216 \left (\int \frac {\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right ) x}{\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right )^{2} \tan \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-\tan \left (\frac {3 b x}{2}+\frac {3 a}{2}\right )^{2}+\tan \left (\frac {b x}{2}+\frac {a}{2}\right )^{2}-1}d x \right ) b^{3} c d -6 \sin \left (3 b x +3 a \right ) b c d -6 \sin \left (3 b x +3 a \right ) b \,d^{2} x +18 a b c d -9 b^{2} c^{2}+2 d^{2}}{27 b^{3}} \] Input:

int((d*x+c)^2*sec(b*x+a)*sin(3*b*x+3*a),x)
 

Output:

(9*cos(3*a + 3*b*x)*b**2*c**2 + 18*cos(3*a + 3*b*x)*b**2*c*d*x + 9*cos(3*a 
 + 3*b*x)*b**2*d**2*x**2 - 2*cos(3*a + 3*b*x)*d**2 - 108*int(tan((3*a + 3* 
b*x)/2)/(tan((3*a + 3*b*x)/2)**2*tan((a + b*x)/2)**2 - tan((3*a + 3*b*x)/2 
)**2 + tan((a + b*x)/2)**2 - 1),x)*b**3*c**2 - 108*int((tan((3*a + 3*b*x)/ 
2)*x**2)/(tan((3*a + 3*b*x)/2)**2*tan((a + b*x)/2)**2 - tan((3*a + 3*b*x)/ 
2)**2 + tan((a + b*x)/2)**2 - 1),x)*b**3*d**2 - 216*int((tan((3*a + 3*b*x) 
/2)*x)/(tan((3*a + 3*b*x)/2)**2*tan((a + b*x)/2)**2 - tan((3*a + 3*b*x)/2) 
**2 + tan((a + b*x)/2)**2 - 1),x)*b**3*c*d - 6*sin(3*a + 3*b*x)*b*c*d - 6* 
sin(3*a + 3*b*x)*b*d**2*x + 18*a*b*c*d - 9*b**2*c**2 + 2*d**2)/(27*b**3)