\(\int \frac {\tan (d (a+b \log (c x^n)))}{x^3} \, dx\) [164]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 17, antiderivative size = 69 \[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\frac {i}{2 x^2}-\frac {i \operatorname {Hypergeometric2F1}\left (1,\frac {i}{b d n},1+\frac {i}{b d n},-e^{2 i a d} \left (c x^n\right )^{2 i b d}\right )}{x^2} \] Output:

1/2*I/x^2-I*hypergeom([1, I/b/d/n],[1+I/b/d/n],-exp(2*I*a*d)*(c*x^n)^(2*I* 
b*d))/x^2
 

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(147\) vs. \(2(69)=138\).

Time = 2.68 (sec) , antiderivative size = 147, normalized size of antiderivative = 2.13 \[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\frac {-e^{2 i d \left (a+b \log \left (c x^n\right )\right )} \operatorname {Hypergeometric2F1}\left (1,1+\frac {i}{b d n},2+\frac {i}{b d n},-e^{2 i d \left (a+b \log \left (c x^n\right )\right )}\right )+(1-i b d n) \operatorname {Hypergeometric2F1}\left (1,\frac {i}{b d n},1+\frac {i}{b d n},-e^{2 i d \left (a+b \log \left (c x^n\right )\right )}\right )}{2 (i+b d n) x^2} \] Input:

Integrate[Tan[d*(a + b*Log[c*x^n])]/x^3,x]
 

Output:

(-(E^((2*I)*d*(a + b*Log[c*x^n]))*Hypergeometric2F1[1, 1 + I/(b*d*n), 2 + 
I/(b*d*n), -E^((2*I)*d*(a + b*Log[c*x^n]))]) + (1 - I*b*d*n)*Hypergeometri 
c2F1[1, I/(b*d*n), 1 + I/(b*d*n), -E^((2*I)*d*(a + b*Log[c*x^n]))])/(2*(I 
+ b*d*n)*x^2)
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.52, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {5008, 5006, 959, 888}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx\)

\(\Big \downarrow \) 5008

\(\displaystyle \frac {\left (c x^n\right )^{2/n} \int \left (c x^n\right )^{-1-\frac {2}{n}} \tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )d\left (c x^n\right )}{n x^2}\)

\(\Big \downarrow \) 5006

\(\displaystyle \frac {\left (c x^n\right )^{2/n} \int \frac {\left (c x^n\right )^{-1-\frac {2}{n}} \left (i-i e^{2 i a d} \left (c x^n\right )^{2 i b d}\right )}{e^{2 i a d} \left (c x^n\right )^{2 i b d}+1}d\left (c x^n\right )}{n x^2}\)

\(\Big \downarrow \) 959

\(\displaystyle \frac {\left (c x^n\right )^{2/n} \left (2 i \int \frac {\left (c x^n\right )^{-1-\frac {2}{n}}}{e^{2 i a d} \left (c x^n\right )^{2 i b d}+1}d\left (c x^n\right )+\frac {1}{2} i n \left (c x^n\right )^{-2/n}\right )}{n x^2}\)

\(\Big \downarrow \) 888

\(\displaystyle \frac {\left (c x^n\right )^{2/n} \left (\frac {1}{2} i n \left (c x^n\right )^{-2/n}-i n \left (c x^n\right )^{-2/n} \operatorname {Hypergeometric2F1}\left (1,\frac {i}{b d n},1+\frac {i}{b d n},-e^{2 i a d} \left (c x^n\right )^{2 i b d}\right )\right )}{n x^2}\)

Input:

Int[Tan[d*(a + b*Log[c*x^n])]/x^3,x]
 

Output:

((c*x^n)^(2/n)*(((I/2)*n)/(c*x^n)^(2/n) - (I*n*Hypergeometric2F1[1, I/(b*d 
*n), 1 + I/(b*d*n), -(E^((2*I)*a*d)*(c*x^n)^((2*I)*b*d))])/(c*x^n)^(2/n))) 
/(n*x^2)
 

Defintions of rubi rules used

rule 888
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p 
*((c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/n, (m + 1)/n + 1 
, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] && (ILt 
Q[p, 0] || GtQ[a, 0])
 

rule 959
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n 
_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p 
+ 1) + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m + n*(p 
 + 1) + 1))   Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, 
 n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[m + n*(p + 1) + 1, 0]
 

rule 5006
Int[((e_.)*(x_))^(m_.)*Tan[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] 
:> Int[(e*x)^m*((I - I*E^(2*I*a*d)*x^(2*I*b*d))/(1 + E^(2*I*a*d)*x^(2*I*b*d 
)))^p, x] /; FreeQ[{a, b, d, e, m, p}, x]
 

rule 5008
Int[((e_.)*(x_))^(m_.)*Tan[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_ 
.), x_Symbol] :> Simp[(e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))   Subst[Int[x 
^((m + 1)/n - 1)*Tan[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, 
 c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
 
Maple [F]

\[\int \frac {\tan \left (d \left (a +b \ln \left (c \,x^{n}\right )\right )\right )}{x^{3}}d x\]

Input:

int(tan(d*(a+b*ln(c*x^n)))/x^3,x)
 

Output:

int(tan(d*(a+b*ln(c*x^n)))/x^3,x)
 

Fricas [F]

\[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\int { \frac {\tan \left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{3}} \,d x } \] Input:

integrate(tan(d*(a+b*log(c*x^n)))/x^3,x, algorithm="fricas")
 

Output:

integral(tan(b*d*log(c*x^n) + a*d)/x^3, x)
 

Sympy [F]

\[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\int \frac {\tan {\left (a d + b d \log {\left (c x^{n} \right )} \right )}}{x^{3}}\, dx \] Input:

integrate(tan(d*(a+b*ln(c*x**n)))/x**3,x)
 

Output:

Integral(tan(a*d + b*d*log(c*x**n))/x**3, x)
 

Maxima [F]

\[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\int { \frac {\tan \left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{3}} \,d x } \] Input:

integrate(tan(d*(a+b*log(c*x^n)))/x^3,x, algorithm="maxima")
 

Output:

integrate(tan((b*log(c*x^n) + a)*d)/x^3, x)
 

Giac [F]

\[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\int { \frac {\tan \left ({\left (b \log \left (c x^{n}\right ) + a\right )} d\right )}{x^{3}} \,d x } \] Input:

integrate(tan(d*(a+b*log(c*x^n)))/x^3,x, algorithm="giac")
 

Output:

integrate(tan((b*log(c*x^n) + a)*d)/x^3, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\int \frac {\mathrm {tan}\left (d\,\left (a+b\,\ln \left (c\,x^n\right )\right )\right )}{x^3} \,d x \] Input:

int(tan(d*(a + b*log(c*x^n)))/x^3,x)
 

Output:

int(tan(d*(a + b*log(c*x^n)))/x^3, x)
 

Reduce [F]

\[ \int \frac {\tan \left (d \left (a+b \log \left (c x^n\right )\right )\right )}{x^3} \, dx=\int \frac {\tan \left (\mathrm {log}\left (x^{n} c \right ) b d +a d \right )}{x^{3}}d x \] Input:

int(tan(d*(a+b*log(c*x^n)))/x^3,x)
 

Output:

int(tan(log(x**n*c)*b*d + a*d)/x**3,x)