\(\int \frac {\tan ^{\frac {3}{2}}(a+b \log (c x^n))}{x} \, dx\) [181]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 148 \[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2} b n}-\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2} b n}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{1+\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2} b n}+\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b n} \] Output:

-1/2*arctan(-1+2^(1/2)*tan(a+b*ln(c*x^n))^(1/2))*2^(1/2)/b/n-1/2*arctan(1+ 
2^(1/2)*tan(a+b*ln(c*x^n))^(1/2))*2^(1/2)/b/n-1/2*arctanh(2^(1/2)*tan(a+b* 
ln(c*x^n))^(1/2)/(1+tan(a+b*ln(c*x^n))))*2^(1/2)/b/n+2*tan(a+b*ln(c*x^n))^ 
(1/2)/b/n
 

Mathematica [A] (verified)

Time = 0.22 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.19 \[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}-\frac {\arctan \left (1+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}+\frac {\log \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\tan \left (a+b \log \left (c x^n\right )\right )\right )}{2 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\tan \left (a+b \log \left (c x^n\right )\right )\right )}{2 \sqrt {2}}+2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b n} \] Input:

Integrate[Tan[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

(ArcTan[1 - Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]]]/Sqrt[2] - ArcTan[1 + Sqrt 
[2]*Sqrt[Tan[a + b*Log[c*x^n]]]]/Sqrt[2] + Log[1 - Sqrt[2]*Sqrt[Tan[a + b* 
Log[c*x^n]]] + Tan[a + b*Log[c*x^n]]]/(2*Sqrt[2]) - Log[1 + Sqrt[2]*Sqrt[T 
an[a + b*Log[c*x^n]]] + Tan[a + b*Log[c*x^n]]]/(2*Sqrt[2]) + 2*Sqrt[Tan[a 
+ b*Log[c*x^n]]])/(b*n)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.30, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.737, Rules used = {3039, 3042, 3954, 3042, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \tan \left (a+b \log \left (c x^n\right )\right )^{3/2}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3954

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\int \frac {1}{\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\int \frac {1}{\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {\int \frac {1}{\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )} \left (\tan ^2\left (a+b \log \left (c x^n\right )\right )+1\right )}d\tan \left (a+b \log \left (c x^n\right )\right )}{b}}{n}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \int \frac {1}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}}{n}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \int \frac {\tan \left (a+b \log \left (c x^n\right )\right )+1}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{b}}{n}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \int \frac {1}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )\right )}{b}}{n}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \left (\frac {\int \frac {1}{-\tan \left (a+b \log \left (c x^n\right )\right )-1}d\left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan \left (a+b \log \left (c x^n\right )\right )-1}d\left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}\right )\right )}{b}}{n}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \int \frac {1-\tan \left (a+b \log \left (c x^n\right )\right )}{\tan ^2\left (a+b \log \left (c x^n\right )\right )+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b}}{n}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b}}{n}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b}}{n}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}{\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1}d\sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )\right )}{b}}{n}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\frac {2 \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan \left (a+b \log \left (c x^n\right )\right )+\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan \left (a+b \log \left (c x^n\right )\right )-\sqrt {2} \sqrt {\tan \left (a+b \log \left (c x^n\right )\right )}+1\right )}{2 \sqrt {2}}\right )\right )}{b}}{n}\)

Input:

Int[Tan[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

((-2*((-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]]]/Sqrt[2]) + ArcTan 
[1 + Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]]]/Sqrt[2])/2 + (-1/2*Log[1 - Sqrt[ 
2]*Sqrt[Tan[a + b*Log[c*x^n]]] + Tan[a + b*Log[c*x^n]]]/Sqrt[2] + Log[1 + 
Sqrt[2]*Sqrt[Tan[a + b*Log[c*x^n]]] + Tan[a + b*Log[c*x^n]]]/(2*Sqrt[2]))/ 
2))/b + (2*Sqrt[Tan[a + b*Log[c*x^n]]])/b)/n
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3954
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d 
*x])^(n - 1)/(d*(n - 1))), x] - Simp[b^2   Int[(b*Tan[c + d*x])^(n - 2), x] 
, x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.94

method result size
derivativedivides \(\frac {2 \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+1}{\tan \left (a +b \ln \left (c \,x^{n}\right )\right )-\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )\right )}{4}}{n b}\) \(139\)
default \(\frac {2 \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}-\frac {\sqrt {2}\, \left (\ln \left (\frac {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+1}{\tan \left (a +b \ln \left (c \,x^{n}\right )\right )-\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}+1}\right )+2 \arctan \left (1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )+2 \arctan \left (-1+\sqrt {2}\, \sqrt {\tan \left (a +b \ln \left (c \,x^{n}\right )\right )}\right )\right )}{4}}{n b}\) \(139\)

Input:

int(tan(a+b*ln(c*x^n))^(3/2)/x,x,method=_RETURNVERBOSE)
 

Output:

1/n/b*(2*tan(a+b*ln(c*x^n))^(1/2)-1/4*2^(1/2)*(ln((tan(a+b*ln(c*x^n))+2^(1 
/2)*tan(a+b*ln(c*x^n))^(1/2)+1)/(tan(a+b*ln(c*x^n))-2^(1/2)*tan(a+b*ln(c*x 
^n))^(1/2)+1))+2*arctan(1+2^(1/2)*tan(a+b*ln(c*x^n))^(1/2))+2*arctan(-1+2^ 
(1/2)*tan(a+b*ln(c*x^n))^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 406 vs. \(2 (128) = 256\).

Time = 0.08 (sec) , antiderivative size = 406, normalized size of antiderivative = 2.74 \[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 \, \sqrt {2} \arctan \left (\sqrt {2} \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}} + 1\right ) + 2 \, \sqrt {2} \arctan \left (\sqrt {2} \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}} - 1\right ) + \sqrt {2} \log \left (\frac {{\left (\sqrt {2} \cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + \sqrt {2}\right )} \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}} + \cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + \sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}\right ) - \sqrt {2} \log \left (-\frac {{\left (\sqrt {2} \cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + \sqrt {2}\right )} \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}} - \cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) - \sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) - 1}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}\right ) - 8 \, \sqrt {\frac {\sin \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right )}{\cos \left (2 \, b n \log \left (x\right ) + 2 \, b \log \left (c\right ) + 2 \, a\right ) + 1}}}{4 \, b n} \] Input:

integrate(tan(a+b*log(c*x^n))^(3/2)/x,x, algorithm="fricas")
 

Output:

-1/4*(2*sqrt(2)*arctan(sqrt(2)*sqrt(sin(2*b*n*log(x) + 2*b*log(c) + 2*a)/( 
cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + 1)) + 1) + 2*sqrt(2)*arctan(sqrt(2) 
*sqrt(sin(2*b*n*log(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x) + 2*b*log(c) 
+ 2*a) + 1)) - 1) + sqrt(2)*log(((sqrt(2)*cos(2*b*n*log(x) + 2*b*log(c) + 
2*a) + sqrt(2))*sqrt(sin(2*b*n*log(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x 
) + 2*b*log(c) + 2*a) + 1)) + cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + sin(2 
*b*n*log(x) + 2*b*log(c) + 2*a) + 1)/(cos(2*b*n*log(x) + 2*b*log(c) + 2*a) 
 + 1)) - sqrt(2)*log(-((sqrt(2)*cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + sqr 
t(2))*sqrt(sin(2*b*n*log(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x) + 2*b*lo 
g(c) + 2*a) + 1)) - cos(2*b*n*log(x) + 2*b*log(c) + 2*a) - sin(2*b*n*log(x 
) + 2*b*log(c) + 2*a) - 1)/(cos(2*b*n*log(x) + 2*b*log(c) + 2*a) + 1)) - 8 
*sqrt(sin(2*b*n*log(x) + 2*b*log(c) + 2*a)/(cos(2*b*n*log(x) + 2*b*log(c) 
+ 2*a) + 1)))/(b*n)
 

Sympy [F]

\[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\tan ^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{x}\, dx \] Input:

integrate(tan(a+b*ln(c*x**n))**(3/2)/x,x)
 

Output:

Integral(tan(a + b*log(c*x**n))**(3/2)/x, x)
 

Maxima [F]

\[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\tan \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}{x} \,d x } \] Input:

integrate(tan(a+b*log(c*x^n))^(3/2)/x,x, algorithm="maxima")
 

Output:

integrate(tan(b*log(c*x^n) + a)^(3/2)/x, x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Timed out} \] Input:

integrate(tan(a+b*log(c*x^n))^(3/2)/x,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [B] (verification not implemented)

Time = 21.61 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.53 \[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2\,\sqrt {\mathrm {tan}\left (a+b\,\ln \left (c\,x^n\right )\right )}}{b\,n}+\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )\,1{}\mathrm {i}}{b\,n}+\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left ({\left (-1\right )}^{1/4}\,\sqrt {\mathrm {tan}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )\,1{}\mathrm {i}}{b\,n} \] Input:

int(tan(a + b*log(c*x^n))^(3/2)/x,x)
 

Output:

(2*tan(a + b*log(c*x^n))^(1/2))/(b*n) + ((-1)^(1/4)*atan((-1)^(1/4)*tan(a 
+ b*log(c*x^n))^(1/2))*1i)/(b*n) + ((-1)^(1/4)*atanh((-1)^(1/4)*tan(a + b* 
log(c*x^n))^(1/2))*1i)/(b*n)
 

Reduce [F]

\[ \int \frac {\tan ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\frac {2 \sqrt {\tan \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}-\left (\int \frac {\sqrt {\tan \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}}{\tan \left (\mathrm {log}\left (x^{n} c \right ) b +a \right ) x}d x \right ) b n}{b n} \] Input:

int(tan(a+b*log(c*x^n))^(3/2)/x,x)
 

Output:

(2*sqrt(tan(log(x**n*c)*b + a)) - int(sqrt(tan(log(x**n*c)*b + a))/(tan(lo 
g(x**n*c)*b + a)*x),x)*b*n)/(b*n)