\(\int \frac {1}{x \sec ^{\frac {5}{2}}(a+b \log (c x^n))} \, dx\) [277]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 93 \[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {6 \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} E\left (\left .\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}{5 b n}+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{5 b n \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )} \] Output:

6/5*cos(a+b*ln(c*x^n))^(1/2)*EllipticE(sin(1/2*a+1/2*b*ln(c*x^n)),2^(1/2)) 
*sec(a+b*ln(c*x^n))^(1/2)/b/n+2/5*sin(a+b*ln(c*x^n))/b/n/sec(a+b*ln(c*x^n) 
)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.89 \[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {\sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \left (12 \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} E\left (\left .\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right |2\right )+\sin \left (a+b \log \left (c x^n\right )\right )+\sin \left (3 \left (a+b \log \left (c x^n\right )\right )\right )\right )}{10 b n} \] Input:

Integrate[1/(x*Sec[a + b*Log[c*x^n]]^(5/2)),x]
 

Output:

(Sqrt[Sec[a + b*Log[c*x^n]]]*(12*Sqrt[Cos[a + b*Log[c*x^n]]]*EllipticE[(a 
+ b*Log[c*x^n])/2, 2] + Sin[a + b*Log[c*x^n]] + Sin[3*(a + b*Log[c*x^n])]) 
)/(10*b*n)
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.98, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3039, 3042, 4256, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \frac {1}{\sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\csc \left (a+b \log \left (c x^n\right )+\frac {\pi }{2}\right )^{5/2}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {\frac {3}{5} \int \frac {1}{\sqrt {\sec \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{5 b \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{5} \int \frac {1}{\sqrt {\csc \left (a+b \log \left (c x^n\right )+\frac {\pi }{2}\right )}}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{5 b \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {3}{5} \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \int \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{5 b \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3}{5} \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} \int \sqrt {\sin \left (a+b \log \left (c x^n\right )+\frac {\pi }{2}\right )}d\log \left (c x^n\right )+\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{5 b \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}}{n}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {2 \sin \left (a+b \log \left (c x^n\right )\right )}{5 b \sec ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}+\frac {6 \sqrt {\sec \left (a+b \log \left (c x^n\right )\right )} \sqrt {\cos \left (a+b \log \left (c x^n\right )\right )} E\left (\left .\frac {1}{2} \left (a+b \log \left (c x^n\right )\right )\right |2\right )}{5 b}}{n}\)

Input:

Int[1/(x*Sec[a + b*Log[c*x^n]]^(5/2)),x]
 

Output:

((6*Sqrt[Cos[a + b*Log[c*x^n]]]*EllipticE[(a + b*Log[c*x^n])/2, 2]*Sqrt[Se 
c[a + b*Log[c*x^n]]])/(5*b) + (2*Sin[a + b*Log[c*x^n]])/(5*b*Sec[a + b*Log 
[c*x^n]]^(3/2)))/n
 

Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(279\) vs. \(2(85)=170\).

Time = 3.37 (sec) , antiderivative size = 280, normalized size of antiderivative = 3.01

method result size
derivativedivides \(-\frac {2 \sqrt {\left (2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (-8 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{6}+8 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2} \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (a +2 b \ln \left (\sqrt {c \,x^{n}}\right )\right )}{2}}\, \sqrt {-1+2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right )}{5 n \sqrt {-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(280\)
default \(-\frac {2 \sqrt {\left (2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \left (-8 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{6}+8 \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2} \cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (a +2 b \ln \left (\sqrt {c \,x^{n}}\right )\right )}{2}}\, \sqrt {-1+2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ), \sqrt {2}\right )\right )}{5 n \sqrt {-2 {\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{4}+{\sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}}\, \sin \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right ) \sqrt {2 {\cos \left (\frac {a}{2}+\frac {b \ln \left (c \,x^{n}\right )}{2}\right )}^{2}-1}\, b}\) \(280\)

Input:

int(1/x/sec(a+b*ln(c*x^n))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-2/5/n*((2*cos(1/2*a+1/2*b*ln(c*x^n))^2-1)*sin(1/2*a+1/2*b*ln(c*x^n))^2)^( 
1/2)*(-8*cos(1/2*a+1/2*b*ln(c*x^n))*sin(1/2*a+1/2*b*ln(c*x^n))^6+8*cos(1/2 
*a+1/2*b*ln(c*x^n))*sin(1/2*a+1/2*b*ln(c*x^n))^4-2*sin(1/2*a+1/2*b*ln(c*x^ 
n))^2*cos(1/2*a+1/2*b*ln(c*x^n))-3*(sin(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*(- 
1+2*sin(1/2*a+1/2*b*ln(c*x^n))^2)^(1/2)*EllipticE(cos(1/2*a+1/2*b*ln(c*x^n 
)),2^(1/2)))/(-2*sin(1/2*a+1/2*b*ln(c*x^n))^4+sin(1/2*a+1/2*b*ln(c*x^n))^2 
)^(1/2)/sin(1/2*a+1/2*b*ln(c*x^n))/(2*cos(1/2*a+1/2*b*ln(c*x^n))^2-1)^(1/2 
)/b
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.22 \[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\frac {2 \, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{\frac {3}{2}} \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + 3 i \, \sqrt {2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )\right ) - 3 i \, \sqrt {2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )\right )}{5 \, b n} \] Input:

integrate(1/x/sec(a+b*log(c*x^n))^(5/2),x, algorithm="fricas")
 

Output:

1/5*(2*cos(b*n*log(x) + b*log(c) + a)^(3/2)*sin(b*n*log(x) + b*log(c) + a) 
 + 3*I*sqrt(2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(b*n*l 
og(x) + b*log(c) + a) + I*sin(b*n*log(x) + b*log(c) + a))) - 3*I*sqrt(2)*w 
eierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(b*n*log(x) + b*log(c) 
 + a) - I*sin(b*n*log(x) + b*log(c) + a))))/(b*n)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\text {Timed out} \] Input:

integrate(1/x/sec(a+b*ln(c*x**n))**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int { \frac {1}{x \sec \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/x/sec(a+b*log(c*x^n))^(5/2),x, algorithm="maxima")
 

Output:

integrate(1/(x*sec(b*log(c*x^n) + a)^(5/2)), x)
 

Giac [F]

\[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int { \frac {1}{x \sec \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate(1/x/sec(a+b*log(c*x^n))^(5/2),x, algorithm="giac")
 

Output:

integrate(1/(x*sec(b*log(c*x^n) + a)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int \frac {1}{x\,{\left (\frac {1}{\cos \left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}^{5/2}} \,d x \] Input:

int(1/(x*(1/cos(a + b*log(c*x^n)))^(5/2)),x)
 

Output:

int(1/(x*(1/cos(a + b*log(c*x^n)))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {1}{x \sec ^{\frac {5}{2}}\left (a+b \log \left (c x^n\right )\right )} \, dx=\int \frac {\sqrt {\sec \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}}{{\sec \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}^{3} x}d x \] Input:

int(1/x/sec(a+b*log(c*x^n))^(5/2),x)
 

Output:

int(sqrt(sec(log(x**n*c)*b + a))/(sec(log(x**n*c)*b + a)**3*x),x)