\(\int \frac {\csc ^{\frac {3}{2}}(a+b \log (c x^n))}{x} \, dx\) [311]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 95 \[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 \cos \left (a+b \log \left (c x^n\right )\right ) \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}{b n}-\frac {2 \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )} E\left (\left .\frac {1}{4} \left (2 a-\pi +2 b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {\sin \left (a+b \log \left (c x^n\right )\right )}}{b n} \] Output:

-2*cos(a+b*ln(c*x^n))*csc(a+b*ln(c*x^n))^(1/2)/b/n+2*csc(a+b*ln(c*x^n))^(1 
/2)*EllipticE(cos(1/2*a+1/4*Pi+1/2*b*ln(c*x^n)),2^(1/2))*sin(a+b*ln(c*x^n) 
)^(1/2)/b/n
 

Mathematica [A] (verified)

Time = 0.12 (sec) , antiderivative size = 72, normalized size of antiderivative = 0.76 \[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )} \left (\cos \left (a+b \log \left (c x^n\right )\right )-E\left (\left .\frac {1}{4} \left (-2 a+\pi -2 b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {\sin \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \] Input:

Integrate[Csc[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

(-2*Sqrt[Csc[a + b*Log[c*x^n]]]*(Cos[a + b*Log[c*x^n]] - EllipticE[(-2*a + 
 Pi - 2*b*Log[c*x^n])/4, 2]*Sqrt[Sin[a + b*Log[c*x^n]]]))/(b*n)
 

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3039, 3042, 4255, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \csc \left (a+b \log \left (c x^n\right )\right )^{3/2}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {-\int \frac {1}{\sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )-\frac {2 \cos \left (a+b \log \left (c x^n\right )\right ) \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}{b}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\int \frac {1}{\sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )-\frac {2 \cos \left (a+b \log \left (c x^n\right )\right ) \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}{b}}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {-\sqrt {\sin \left (a+b \log \left (c x^n\right )\right )} \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )} \int \sqrt {\sin \left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )-\frac {2 \cos \left (a+b \log \left (c x^n\right )\right ) \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}{b}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\sqrt {\sin \left (a+b \log \left (c x^n\right )\right )} \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )} \int \sqrt {\sin \left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )-\frac {2 \cos \left (a+b \log \left (c x^n\right )\right ) \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}{b}}{n}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {-\frac {2 \cos \left (a+b \log \left (c x^n\right )\right ) \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 \sqrt {\sin \left (a+b \log \left (c x^n\right )\right )} \sqrt {\csc \left (a+b \log \left (c x^n\right )\right )} E\left (\left .\frac {1}{2} \left (a+b \log \left (c x^n\right )-\frac {\pi }{2}\right )\right |2\right )}{b}}{n}\)

Input:

Int[Csc[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

((-2*Cos[a + b*Log[c*x^n]]*Sqrt[Csc[a + b*Log[c*x^n]]])/b - (2*Sqrt[Csc[a 
+ b*Log[c*x^n]]]*EllipticE[(a - Pi/2 + b*Log[c*x^n])/2, 2]*Sqrt[Sin[a + b* 
Log[c*x^n]]])/b)/n
 

Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(189\) vs. \(2(88)=176\).

Time = 0.68 (sec) , antiderivative size = 190, normalized size of antiderivative = 2.00

method result size
derivativedivides \(\frac {2 \sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}\, \sqrt {-2 \sin \left (a +b \ln \left (c \,x^{n}\right )\right )+2}\, \sqrt {-\sin \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticE}\left (\sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}, \frac {\sqrt {2}}{2}\right )-\sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}\, \sqrt {-2 \sin \left (a +b \ln \left (c \,x^{n}\right )\right )+2}\, \sqrt {-\sin \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}, \frac {\sqrt {2}}{2}\right )-2 {\cos \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{n \cos \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(190\)
default \(\frac {2 \sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}\, \sqrt {-2 \sin \left (a +b \ln \left (c \,x^{n}\right )\right )+2}\, \sqrt {-\sin \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticE}\left (\sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}, \frac {\sqrt {2}}{2}\right )-\sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}\, \sqrt {-2 \sin \left (a +b \ln \left (c \,x^{n}\right )\right )+2}\, \sqrt {-\sin \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )+1}, \frac {\sqrt {2}}{2}\right )-2 {\cos \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{n \cos \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sin \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(190\)

Input:

int(csc(a+b*ln(c*x^n))^(3/2)/x,x,method=_RETURNVERBOSE)
 

Output:

1/n*(2*(sin(a+b*ln(c*x^n))+1)^(1/2)*(-2*sin(a+b*ln(c*x^n))+2)^(1/2)*(-sin( 
a+b*ln(c*x^n)))^(1/2)*EllipticE((sin(a+b*ln(c*x^n))+1)^(1/2),1/2*2^(1/2))- 
(sin(a+b*ln(c*x^n))+1)^(1/2)*(-2*sin(a+b*ln(c*x^n))+2)^(1/2)*(-sin(a+b*ln( 
c*x^n)))^(1/2)*EllipticF((sin(a+b*ln(c*x^n))+1)^(1/2),1/2*2^(1/2))-2*cos(a 
+b*ln(c*x^n))^2)/cos(a+b*ln(c*x^n))/sin(a+b*ln(c*x^n))^(1/2)/b
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.08 (sec) , antiderivative size = 111, normalized size of antiderivative = 1.17 \[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {\sqrt {2 i} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )\right ) + \sqrt {-2 i} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - i \, \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )\right ) + \frac {2 \, \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{\sqrt {\sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}}}{b n} \] Input:

integrate(csc(a+b*log(c*x^n))^(3/2)/x,x, algorithm="fricas")
 

Output:

-(sqrt(2*I)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cos(b*n*log(x) 
 + b*log(c) + a) + I*sin(b*n*log(x) + b*log(c) + a))) + sqrt(-2*I)*weierst 
rassZeta(4, 0, weierstrassPInverse(4, 0, cos(b*n*log(x) + b*log(c) + a) - 
I*sin(b*n*log(x) + b*log(c) + a))) + 2*cos(b*n*log(x) + b*log(c) + a)/sqrt 
(sin(b*n*log(x) + b*log(c) + a)))/(b*n)
 

Sympy [F]

\[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\csc ^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{x}\, dx \] Input:

integrate(csc(a+b*ln(c*x**n))**(3/2)/x,x)
 

Output:

Integral(csc(a + b*log(c*x**n))**(3/2)/x, x)
 

Maxima [F]

\[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\csc \left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}{x} \,d x } \] Input:

integrate(csc(a+b*log(c*x^n))^(3/2)/x,x, algorithm="maxima")
 

Output:

integrate(csc(b*log(c*x^n) + a)^(3/2)/x, x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Timed out} \] Input:

integrate(csc(a+b*log(c*x^n))^(3/2)/x,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {{\left (\frac {1}{\sin \left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}^{3/2}}{x} \,d x \] Input:

int((1/sin(a + b*log(c*x^n)))^(3/2)/x,x)
 

Output:

int((1/sin(a + b*log(c*x^n)))^(3/2)/x, x)
 

Reduce [F]

\[ \int \frac {\csc ^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\sqrt {\csc \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}\, \csc \left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}{x}d x \] Input:

int(csc(a+b*log(c*x^n))^(3/2)/x,x)
 

Output:

int((sqrt(csc(log(x**n*c)*b + a))*csc(log(x**n*c)*b + a))/x,x)